Date	Торіс	Notes	Assignments
T: 1-14	First order ODEs		Prereq Quiz given
W: 1-15	(turn in at my office before 11:25am)		Prereq Quiz due
TH: 1-16	First order ODEs		
T: 1-21	Theory / Direction Fields		Mission 1 due
TH: 1-23	Applications		
T: 1-28	Complex-Valued Functions		Mission 2 due
TH: 1-30	Smooth Operators		
T: 2-4	Solution of the n-th order problem		Mission 3 due
TH: 2-6	Method of Annihilators		
T: 2-11	Variation of Parameters		Mission 4 due
TH: 2-13	Applications		
T: 2-18	Questions		Mission 5 due
TH: 2-20	Test 1		
T: 2-25	Series solutions		
TH: 2-27	Singular points and Frobenius Method		
T: 3-4	Laplace Transform technique		Mission 6 due
TH: 3-6	Discontinuity, Dirac Delta technique		
	Spring Break: (3-10 to 14)		no classes 3-11,3-13,3-15
T: 3-18	Systems of ODEs matrices		Mission 7 due
TH: 3-20	e-vector technique		
T: 3-25	Complex e-vectors		Mission 8 due
TH: 3-27	Matrix exp., nonhomogeneous systems		
T: 4-1	applications		Mission 9 due
TH: 4-3	Energy analysis		
T: 4-8	Questions		Mission 10 due
W: 4-9	Assessment Day (no class)		
TH: 4-10	Test 2		
T: 4-15	Fourier Analysis		
TH: 4-17	Boundary value problems		
M: 4-21	Easter Monday		
T: 4-22	Heat Equation		
TH: 4-24	Wave Equation		
T: 4-29	Laplace's Equation		Test 3 due.

- Test 3 is a take-home test.
- Test 1=200pts, Test 2=200pts, Test 3=100pts, Prereq. Quiz 10pts/ Course Survey 10pts/ Missions (200pts)/ Final = 280pts.
- I always suggest you work through the lectures as well as problems from Zill (it has many answers in the back). For further study, you might consult my old test, quiz and hwk solutions.
- The missions are due at the start of class. They should be written clearly on the documents I provided as pdfs, single-sided, in order, with a staple. There are 146 problems in total over the 10 Missions. Each problem is worth 1.5pts. This means there is about a 10% curve built-in.
- No notes or notecards are permitted for the in-class exam, tests or quizzes.