0 Daumen
241 Aufrufe

kann mir jemand eine lösung dafür geben?

Gefragt von

2 Antworten

0 Daumen

x--->0

(1 - cos^3(x)) / x^2

Ok. Sowohl Zähler als auch Nenner gehen gegen Null. Damit die Regel von Hospital anwenden.

3·sin(x)·cos(x)^2 / 2x

Auch hier gehen wieder Zähler und Nenner gegen 0. Daher wieder Hospital anwenden

(9·cos(x)^3 - 6·cos(x)) / 2

Hier kann ich jetzt 0 einsetzen und wir bekommen als Grenzwert

3/2

 

Beantwortet von 260 k
0 Daumen



    Wenn du etwas siehst.


    lim [ 1 - cos ³ ( x ) ] / x ² =  ( 1 )

    = lim 3 cos ² ( x ) sin ( x ) / 2 x    ( 2 )


    Ganz wesentlich ist hier immer die Anwendung der Grenzwertsätze. Das Kosinusquadrat ist doch voll unkritisch; das geht gegen Eins. Es verbleibt


     ( 3/2 ) lim sin ( x ) / x   ( 3 )


    diesen Grenzwert kennt übrigens jeder Physiker: Er ist Eins und kommt auch mit der Krankenhausregel so raus. also 3/2 .

  Was  lernen wir daraus? Immer spähen, was du bereits vor den Limes ziehen kannst.

Beantwortet von 1,3 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...