Lineare Funktion f(x) = 3-12/7x → Für welche Werte von t ist f(√2t) < 0,6?

0 Daumen
147 Aufrufe

Hallo,

ich habe ein Funktion f(x) = 3 - 12/7x ; x ist ein Element von IR

und dann kommt die Frage: Für welche Werte von t ist f(√2t) < 0,6

Was meinen die mit t? Ist das irgend ein Zeichen in der Mathematik oder eine Zahl? und was soll ich dann machen mit ...< 0,6 ? Ich habe keinen Ansatz, wie ich vorgehen soll oder was genau mit dieser Frage gemeint ist, ich bräuchte nur einen Hinweis oder so wie ich vorgehen muss bei solchen Aufgaben.

Gefragt 20 Okt 2012 von Martin1996

3 Antworten

0 Daumen
Diesem t sagt man auch Parameter.

f(√2t) = 3 - 12/7*√2t<0,6

3 < 12/7*√2t + 0,6   |-0.6

2,4 < 12/7*√2t   | *7/12 / √2

2,4 *7/12 / √2< t

0,7 *√2 < t    (mit √2 erweitert)

t muss grösser sein als 0,7 *√2
Beantwortet 20 Okt 2012 von Capricorn 2,2 k
0 Daumen
In eine Funktion kann man ja unterschiedliche Zahlen einsetzen (die sogenannten Stellen, oder x-Werte) und erhält dann jeweils ein "Ergebnis", den Funktionswert auch y-Wert genannt.

Setzt man in die gegebene Funktion z.B. 7 für x ein, dann erhält man:

f(7) = 3-12/7 * 7 = 3-12 = -9

Oder für x = 2:

f(2) = 3-12/7 * 2 = 3 - 24/7 = 21/7 - 24/7 = -3/7

Fasst man diese Paare (x,y) als Punkte auf, dann erhält man den Graphen der Funktion, aber das nur nebenbei.

 

Du sollst jetzt √2t in die Funktion einsetzen und schauen, welche Bedingung t erfüllen muss, damit der Funktionswert kleiner ist also 0,6. (Das "<" bedeutet "kleiner als")

Was du dabei berechnen musst ist die Lösungsmenge einer Ungleichung, das funktioniert eigentlich genauso wie bei Gleichungen mit einer kleinen Besonderheit.

 

Bei Gleichungen darfst du ja sogenannte Äquivalenzumformungen durchführen ohne die Lösungsmenge zu beeinflussen. Z.B. bei der Gleichung:

2x - 3 = 5  |+3

2x = 8  |:2

x = 4

So erhält man die Lösung der Gleichung.

Bei einer Ungleichung ist das fast genauso, du darfst beliebige Umformungen durchführen mit einer Sonderregel: Wenn du beide Seiten mit einer negativen Zahl malnimmst oder durch eine negative Zahl teilst, musst du das Vergleichszeichen umdrehen also aus einem "<" (kleiner als) ein ">" (größer als) machen:

3 - 2x < 5  |-3

-2x < 2  |:(-2)

x > -1

Warum das so ist, kann man sich ganz einfach klar machen:

3 < 5

ist eine wahre Aussage. Multipliziert man beide Seiten mit -1 ist es erst dann wieder wahr, wenn man das Vergleichszeichen umdreht:

-3 > -5

 

Ich denke, das sollte ein ausreichender Anstoß sein. Ich hoffe, du kannst die Aufgabe jetzt lösen.

(Falls nicht: Meinst du da √(2t) oder √(2)t? Das heißt steht die Wurzel nur über der 2 oder auch über dem t?)
Beantwortet 20 Okt 2012 von Julian Mi 10 k
VIELEN DANK ERSTMAL HAST MIR GEHOLFEN DIE WURZEL STEHT ÜBER DER 2 UND DEM t
0 Daumen

f(x) = 3 - 12/7·x

 

f(x) < 0.6

3 - 12/7·x < 0.6

x > 1.4

 

nun haben wir allerdings nicht x sondern √2t also

√(2)*t > 1.4

t > 1.4 / √(2) = 0.7√(2)

oder folgendes wenn das t mit unter der Wurzel steht.

√(2*t) > 1.4

t > 49/50 

Beantwortet 21 Okt 2012 von Der_Mathecoach 232 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by Matheretter
...