4. Aufgabenblatt — Analysis I

Aufgabe 4.1 (4 Punkte). a) Beweisen Sie für alle $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

b) Beweisen Sie für alle reellen Zahlen $x \ge 0$ und alle natürlichen Zahlen $n \ge 2$:

$$(1+x)^n \ge \frac{n^2 x^2}{4}$$

Hinweis zu a) und b): Binomischer Satz.

Aufgabe 4.2 (4 Punkte). Zeigen Sie durch direkten Nachweis der Definition der Folgenkonvergenz:

- a) Es gilt $\lim_{n\to\infty} \frac{(-1)^n}{4n-1} = 0$.
- b) Es gilt $\lim_{n\to\infty} \frac{n^2}{n^2+1} = 1$.
- c) Es seien $b \in \mathbb{R}$ mit |b| < 1 und (b_n) eine Folge mit $\lim_{n \to \infty} b_n = b$. Dann gilt $\lim_{n \to \infty} b_n^n = 0$.

Aufgabe 4.3 (4 Punkte). Es seien (a_n) und (b_n) Folgen reeller Zahlen. Beweisen Sie oder widerlegen Sie (durch ein Gegenbeispiel) die folgenden Aussagen:

- a) Wenn (a_n) divergent ist und (b_n) konvergent ist, dann ist $(a_n + b_n)$ divergent.
- b) Wenn (a_n) und (b_n) divergent sind, dann ist auch $(a_n + b_n)$ divergent.
- c) Wenn (a_n) eine Nullfolge und (b_n) beschränkt ist, dann ist auch $(a_n \cdot b_n)$ eine Nullfolge.

Aufgabe 4.4 (4 Punkte). Untersuchen Sie die angegebenen Folgen auf Konvergenz und bestimmen Sie ggf. die Grenzwerte (mit Begründung):

a)
$$a_n = \frac{1 + (-1)^n n^2}{3 + n^2 + n}$$

b)
$$b_n = \frac{n^7 + 3^n + 1}{n^3 + 7^n + (-1)^n}$$

c)
$$c_n = 2^{-n} \binom{n}{k} \qquad \text{(für festes } k \in \mathbb{N}\text{)}$$

d)
$$d_n = \frac{1}{h_n}, \text{ wobei } h_n = \sum_{k=1}^n \frac{1}{k}$$