

12. Aufgabenblatt — Analysis I

Aufgabe 12.1 (4 Punkte). Beweisen Sie für alle $z, w \in \mathbb{C}$:

a)
$$\sin z - \sin w = 2\cos\frac{z+w}{2}\sin\frac{z-w}{2}$$

b)
$$\cos z - \cos w = -2\sin\frac{z+w}{2}\sin\frac{z-w}{2}$$

Aufgabe 12.2 (2 Punkte). Es sei R > 0 und $f : \{z \in \mathbb{C} : |z| \leq R\} \to \mathbb{R}$ sei stetig. Beweisen Sie, dass f beschränkt ist und Minimum und Maximum annimmt.

Aufgabe 12.3 (6 Punkte). a) Es sei $x + iy = e^{i\varphi}$ für $x, y, \varphi \in \mathbb{R}$ und $n \in \mathbb{N}$. Beweisen Sie $\operatorname{Re}(x + iy)^n = \cos(n\varphi)$ sowie $\operatorname{Im}(x + iy)^n = \sin(n\varphi)$.

b) Zeigen Sie mit Hilfe von a)

$$\cos(\frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}, \quad \cos(\frac{\pi}{3}) = \frac{1}{2}, \quad \sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}.$$

c) Stellen Sie die angegebenen komplexen Zahlen in Polarkoordinaten dar:

i)
$$z_1 = 1 - i$$
 ii) $z_2 = -1 + 2i$

d) Bestimmen Sie alle Lösungen $z \in \mathbb{C}$ der Gleichung $z^5 = 1 + i$.

Aufgabe 12.4 (4 Punkte). Untersuchen Sie folgende Funktionen auf Differenzierbarkeit in jedem Punkt des Definitionsbereichs und bestimmen Sie ggf. die Ableitung:

a)
$$f_1: \mathbb{R} \to \mathbb{R}, \ f_1(x) = x|x|$$

b)
$$f_2: \mathbb{R} \to \mathbb{R}, \ f_2(x) = \cos(x^2) \exp(-x) + \frac{x \sin(x)}{2 + x^2}$$

c)
$$f_3:(0,\infty)\to\mathbb{R},\ f_3(x)=x^x$$

d)
$$f_4:(0,1)\to\mathbb{R},\ f_4(x)=\left(\ln\frac{1}{x}\right)^{\alpha} \quad (\alpha>0)$$