6. Übungsblatt zu der Vorlesung "Analysis und Lineare Algebra für Informatiker"

Frankfurt, den 16.11.2015

Abgabetermin: 23.11.2015, 10:00 – vor der Vorlesung

21.) Geben Sie – mit Begründung – Matrizen A_1, A_2, A_3, A_4 mit reellen Koeffizienten an, die die folgenden Gleichungen erfüllen:

$$A_1 \cdot \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad A_2 \cdot \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad A_3 \cdot \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad A_4 \cdot \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

(4 Punkte)

- 22.) Für $n \in \mathbb{N}$ und $\lambda \in \mathbb{R}$ heißt die Matrix $\lambda \cdot I_n$ eine n-reihige *skalare* Matrix. Beweisen Sie:
 - i) Sind $A, B \in Mat_{n \times n}(\mathbb{R})$, wobei **A eine skalare Matrix** ist, so ist $A \cdot B = B \cdot A$.
 - ii) Ist A ∈ Mat_{2×2}(ℝ) keine skalare Matrix, so gibt es eine Matrix B ∈ Mat_{2×2}(ℝ) mit A · B ≠ B · A.
 (6 Punkte)
- 23i) Gegeben seien $a,b,c\in\mathbb{R}$ und die Matrix $A=\begin{pmatrix}0&a&b\\0&0&c\\0&0&0\end{pmatrix}$. Berechnen Sie die Matrizen A^2 und A^3 . Welche Eigenschaft hat die Matrix A?
 - ii) Geben Sie mit Begründung eine Matrix $B \in Mat_{2\times 2}(\mathbb{R})$ an, die weder invertierbar, noch nilpotent ist.
 - iii) Beweisen Sie: Ist $M \in Mat_{n \times n}(\mathbb{R})$ nilpotent, so ist $I_n M$ invertierbar.

Hinweis zu iii): Für $m \in \mathbb{N}$ gilt:

$$(I_n - M) \cdot (I_n + M + M^2 + \dots + M^m) = I_n - M^{m+1}.$$

(6 Punkte)

- 24.) Für die folgenden 4 linearen Abbildungen f_1, f_2, f_3, f_4 sind diejenigen Matrizen A_1, A_2, A_3, A_4 anzugeben, für die jeweils gilt: $f_i(v) = A_i \cdot v$ für $1 \le i \le 4$ und alle Vektoren v des jeweiligen Definitionsbereiches. Alle auftretenden Vektoren sind Spaltenvektoren, die aus Platzgründen als transponierte Zeilenvektoren geschrieben werden:
 - i) $f_1: \mathbb{R}^3 \to \mathbb{R}^2: f_1((x_1, x_2, x_3)^T) = (x_1, x_2)^T;$
 - ii) $f_2: \mathbb{R}^3 \to \mathbb{R}^2: f_2((x_1, x_2, x_3)^T) = (x_1 + x_2, x_2 + x_3)^T;$
- iii) $f_3: \mathbb{R}^2 \to \mathbb{R}^3: f_3((x_1, x_2)^T) = (x_1, x_1 + x_2, x_2)^T;$
- iv) $f_4: \mathbb{R}^2 \to \mathbb{R}^2: f_4((x_1, x_2)^T) = (\cos(\alpha) \cdot x_1 \sin(\alpha) \cdot x_2, \sin(\alpha) \cdot x_1 + \cos(\alpha) \cdot x_2)^T$, wobei α ein fixierter Winkel ist.

(4 Punkte)