Aufgabe 1

Sei A eine Menge und \sim eine Äquivalenzrelation auf A. Zeigen Sie: Es gibt eine Menge B und eine Funktion $f:A\to B$, so dass $\forall a,b\in A:a\sim b\Leftrightarrow f(a)=f(b)$.

Beweis. Wir wählen $B=A/\sim$ und f als $f:A\to A/\sim; x\mapsto [x]_\sim$ mit $A/\sim:=\{[x]_\sim:x\in A\}.$

Per Definition gilt $[x]_{\sim} := y \in A : x \sim y$. Es ist also $a \sim b$ genau dann, wenn $[a]_{\sim} = [b]_{\sim}$. Mit f muss also auch gelten $a \sim b \Leftrightarrow [a]_{\sim} = [b]_{\sim} \Leftrightarrow f(a) = f(b)$, was zu zeigen war. \square

Aufgabe 2

Nach Satz 6 hat jede Funktion $f: A \to B$ eine Zerlegung $f = h \circ g$, bei der g surjektiv und h injektiv ist. Kann man auch für jedes f eine Zerlegung $f = h \circ g$ finden, bei der g injektiv und h surjektiv ist? (Beweis oder Gegenbeispiel)

Beweis. Gegenbeispiel.

Wir betrachten $f: \mathbb{R} \to \mathbb{R}; x \mapsto 2$. Laut Angabe müsste eine Funktion $h: X \to \mathbb{R}$ existieren, die surjektiv ist, wobei X beliebig sei. Da aber nicht gefordert wurde, dass f surjektiv ist, gilt insbesondere, dass auch h nicht surjektiv sein muss. Das ist ein Widerspruch, die Behauptung ist damit widerlegt.