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ABSTRACT 

For a compact metric space X, consider a linear subspace A of C (X) containing the constant

functions. One version of the Stone-Weierstrass theorem states that, if A separates points, then the

closure of A under both minima and maxima is dense in C (X). Similarly, by the Hahn-Banach

theorem, if A separates probability measures, A is dense in C (X). We show that if A separates

points from probability measures, then the closure of A under minima is dense in C (X). This

theorem has applications in Economic Theory. 
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The classical Stone-Weierstrass theorem states that, if a linear space A of real valued

functions defined on a compact metric space X contains the constant functions, is closed under
minima and maxima, and separates points, then A is dense in C (X ). The purpose of this paper is to

provide an alternative structure for sets closed under minima alone, which generates the same result. 

The theorem fits between the Stone-Weierstrass theorem and a collorary to the Hahn-Banach 
theorem. Let X be a compact metric space, with metric p, and A the set of probability distributions

(regular unitary measures) on X. Leto. represent the point mass measures:

{1, ifxE E
0x (E) = 0, ifx !! E.

For A £;;; C (X ), define the closure under minima and maxima:

Am= {f :f (x) = min f; (x), f;EA ,nEIN} , 
l$i$n. 

AM= {f :f (x)= max f; (x),f;EA,nEIN}. 
l '5i '5n 

As usual, 1 denotes the constant function one, and A the closure of A in supnorm.

Definition 1: A linear subspace of C (X) containing 1 is said to separate points if, for x and y in X, 

ft d 0x = ft d oy for all f in A implies x=y , 

and to separate probability distributions if, for µ ,VE A, 

ffdµ= ffdv for all f in A implies µ=v , 
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and to separate points from probability distributions if, forµ in .1., xeX .

fJdµ=fJdo., for all f in A implies µ=15 •. 

One statement of the Stone-Weierstrass Theorem is 

(2) 

Theorem 2 (Stone-Weierstrass): If A is a linear subspace ofC (X), le A then A separates points

if and only if (Am )M = C (X) .
Condition (1) is equivalent to the more standard definition of separating points, namely that 

f (x )=f (y) for all f eA implies x=y, and is stated in the somewhat cumbersome way for

comparability to two subsequent results. Note that (Am)M is a linear space closed under maxima and

minima. 

A well known corollary1 to the Hahn-Banach Theorem and Riesz Representation Theorem

has a similar flavor to Theorem 2. 

Theorem 3 (Corollary to Hahn-Banach): If A is a linear subspace of C (X), le A, then A 
separates probability d istributions if and only if A = C (X) . 

Thus, one consolidated view of these results is that, if we are given A �C (X), with le A, 
then A is dense if it separates probability distributions from probability distributions, or if it is

closed under minima and maxima and separates points. In the next section, we prove the following

intennediate result 

Theorem 4: If A is a linear subspace of C (X), le A ,  then A separates points from probability- -
d istributions if and only if Am =AM = C (X). 

This is an intennediate result in the sense that we can eliminate the closure under maxima in 

the Stone-Weierstrass theorem if A separates points from probability distributions, and eliminate

closure under both maxima and minima if A separates probability distributions from probability

distributions. Thus, separating points from probability distributions substitutes for the ability to take 

maxima in the Stone-Weierstrass theorem. 

Consider for example, the set of quadratics on [0,1]: 

A= {<Xo + <X1X + <X2X2: (<X0,<Xi.<Xz)e JR3}.

Clearly A =A * C [0,1]. However, A separates points from probabiiity distributions. That is, for if

µ e .1., µ * liy, then:

J (x -y)2dl5y(x) = 0 < J (x -y)2 dµ (x). 

I. See, for example, Friedman (1970), Corollary 4.8.7, p. 153, and note that the norm dual of C (X) is the set of regular

signed measures. Since leA, ft (Jµ+ - dµ-) = 0 allowsµ+,µ- eA without loss of generality, whereµ=µ+ -µ-is the 
Jordan decomposition ofµ. 
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Therefore, according to Theorem 4, Am =AM = C [0,l] . Thus, the present Theorem is not a 

consequence of the Hahn-Banach Corollary. Similarly, if A is the set of linear functions an [0,1] ,  

A= {a0 + a1x : (a0, a1)EIR2} ,

A separates points, so (Am)M = C [0,1]. Incidentally, (Am)M is the subspace of all piecewise linear 

functions on [0, l ]. However, A fails to separate points from probability distributions, and Am is the 

set of convex functions. This example distinguishes the present Theorem from Stone-Weierstrass. 

Problems for which only minima or maxima, but not both, may be taken arise in a natural 

way in economic theory. Suppose the value v of an object for sale (e.g. an oil lease) is correlated to 

an observable s (for example, the results of a sample drilling). Let f (s I v) be the density of s ,

given v. Suppose the potential buyer, but not the seller, knows v. Can the seller on average charge 

the potential buyer his value v? This reduces to solving the equation 

v = 1 z (s )f (s lv)ds ,

where z (s ) is the price charged when the outcome s arises. Assume s is a draw from a compact 

metric space S. 

If the seller offers the buyer a set { z i. . . . , Zn } of charges, and lets the buyer choose the 

charge he likes best (i.e. which minimizes the expected charge) the seller will earn, on average, 

p (v)= min J z; (s )f (s lv)ds ,
1S:i$n s 

assuming the buyer agrees to buy, that is, the minimum expected charge p (v) is less than v. If 

R = { f z (s )f (s I· )ds : z EC (S)},

then the seller can charge the buyer his value (on average) if the identity is in Rm. Obviously, the 

seller can get arbitrarily close if Rm = C [0, ii], where values fall in [0, ii]. Note that le R since 

f (-Iv) is a density. This problem, and others like it, are explored in [4]  and [ 5 ] .  We shall return to 

a special case of this class of problems in the final section. 

Proof of Theorem 4 
For this section, X is a compact metric space with metric p ,  A is a linear subspace of C (X),

and leA. 

Definition 5: Let e>O, o>O. A positive continuous function f is a nearly u-shapedfunction at y of 

order (E,o) if f (y):;; E and p (x ,y) > o implies f (x) ;>: I. 
The set of nearly u-shaped functions aty of order (E, o) is denoted U(y, E, o). 

We shall make use of three obvious properties of the sets U(y, E, o). 
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(2) 

each U(y, E, o) is convex , and (3) 

each U(y,E,o) has nonempty interior. (4) 

The last fact follows from the observation that the EI 4 ball around E / 2 + p( .,y) I o is contained in

U (y, E, o). The following lemma shows that Am = C (X) if and only if A contains u-shaped

functions at every x EX of all orders (E, o). This lemma is critical to the proof of the theorem.

Lemma 6: Suppose A>;;; C (X) is a linear subspace, lE A. Then Am = C (X) if and only if
[or all y in X and all E,o>O,U(y,E,o)nA o'¢. 

Proof:(=>) Fix yEX, E > 0, and o > 0. Since Am = C (X), there are f;, ... Jn EA so that

I min f;(x)-(EI 2 + p(x ,y) Io) I <El 2, 'ifxEX. 
Is;i::;;n 

Thus, there exists j E {l, . . . , n} with

I fj(y)-E/2 I <E/2. 

From 

fj(Jc)?. min f1(x)?.p(x,y)/o, 
lS"iS.n 

we easily infer fj E U (y ,E,o). 
(¢=) Fixf EC  (X), and E > 0. Define

a = max f(x) - min f(x). xeX xeX 

If a= 0, we're done, since lEA. So suppose a >  0. Since f is continuous, there is a j3>0 so that

p(x ,y) < 13 => I f (y }-f (x) I < EI 2. 

For each y EX' choose g EA n u (y ,E / 3a, j3), and define

h = ag + (f (y) +EI 2)1 EA. 

Note 
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I h (y) - f (y) I =a g (y) + e I 2::; a(e I 3a) + e I 2 < e.

For p(x ,y) < �. 

h(x)- f (x) = ag(x) + f (y)- f (x) + e/ 2 <'=f (y)- f (x) + e/ 2 <'= 0. 

For p(x ,y) <': �.we have

h(x)- f (x) =ag(x) + f (y)- f (x) + e/ 2 <'= a+ f (y)- f (x) + e/2 <'= 0,

by the definition of a. 
Thus h (x) <': f (x) and h (y) < f (y) + e. Now define the set (recall that h depends on y): 

S(y)={x :h(x)<f(x)+ e}. 

Clearly, {S (y): yeX} fonns an open cover of X, since ye S (y). BecauseX is compact, there is a

finite subcover S (x 1), . . . •  S (x. ), with associated functions h 1, · · · ,h •. 
By construction, 0 :> min h; (x) - f (x) < e for all x eX, and thus f eAm as desired. QED 

1-5.i 5n

Remark: The nearly u-shaped functions pennit approximation from above, in the sense that the 

lower envelope, produced by minima, approximates any function. This occurs because u-shaped 

functions take minima near a chosen pointy , and then rise sufficiently rapidly away from y. 

Theorem 4: Suppose A is a linear subspace of C (X ), where X is a compact metric space, and 
le A. Then Am = C (X) if and only if A separates points from probability distributions. 

Proof: ( =>) Suppose µe A, µ * By . Then there exists 8 > 0 so that

f dµ(x) < 1,
N ol:r) 

whereN5(y) = {x Ip (x,y) < 8}. Let e < 1- J dµ(x), and choose/ e U(y,E, o) ()A. Such a
N ,(:;) 

function exists by Lemma 6. Then

ft dµ = f fdµ + f fdµ<': f fdµ<'= f dµ 
N,(y) X\N,(y) X \N,(y) X \N,(y) 

= l - L.(y) dµ >e<'=f(y),
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and so f e A and f separates y from µ, as desired. 

(<=) Suppose by way of contradiction that Am 'I' C (X). By Lemma 6, there existsy, e0>0, and 

00>0 so that U(y, e0• 00) nA = 0. Since A is linear, and hence convex and U (y , e0, 00) is

convex, with nonempty interior, there is a separating functional 2. Thus, there is a signed measureµ, 

and a constant c with : 

for all g eA and all f e U (y ,e0 , 00 ), we have fgd �c sft d µ. ( 6) 

Since A is a linear space, we can assume c=O and fgdµ=O for all g inA.

Letµ=µ + -µ-be the Jordan Decomposition ofµ (see [6, pp. 235-6]), with associated sets 
s+ ands- satisfying: 

s+,-...s-=¢ and f dµ-= f dµ+=o.' ' XS')' ts-)' 

Since bothµ+, andµ- are finite, we may takeµ+, µ-e� without loss of generality, by 

rescaling. Neitherµ+ norµ- can be Oy , for if either is equal to 1iy, ( 5) contradicts ( 6). Sinceµ- is

regular (see [1, Theorem 1.1, p. 7]), there is a closed set 'P>;;S- and 0 < o :s; 00 so that'¥ nN a(y) = 0 
and µ-('¥) > 0. Choose K > l / µ-('¥) � 1, and define

{O, if x eN3(y)

f(x)= K, if xe'f' 

1, if XI" 'PUN a(y) 

and observe, since 'PnS+ = 0, that

By [l, Theorem 1.2, p.8]3 there is a sequence lfn }>;;C (X) satisfying

(a ) f.(x) � 1 for all xl"Na(x0);

(c)  f.(y)=O; and 

2. See [2, Theorem 8 in Part I, p.417]. It is iittportant to note that µ is a regular measure. See [2, Theorem 2, in Part I, 
p.262].
3. This is a straightforward application of the Tietze Extension Theorem. 

( 7) 
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(d ) f.(x)-'>f(x) for all xeX. 

By (a)-(C), f n e U (y, E0, Ii) r;;;.U (y, E0, 00 ). By (b), (d), and ( 7):

fJ.dµ-'> fJdµ<O, 

which contradicts ( 6) and c =O. This completes the proof. Q.E.D. 

Remark: Am may be replaced by AM in the statement of the theorem, by noting

AM = -( ( -A )m) = -Am, since A is linear. In addition, if A is a convex cone and both 1 and -1 are

in A, lemma 6 and theorem 4 continue to hold, with trivial modifications of the proof. 

Conclusion 
When the metric space X is an interval [a, b] of the real line, the Stone-Weierstrass theorem

has an appealing corollary, namely that if 1 and a strictly increasing function are in A, then

(Am) M = C [a ,b ]. There is an analogous corollary for the present theorem.

Corollary 7 : Suppose A is a linear subspace of C [a ,b] containing 1 and two functions f and g 
satisfying: 

f is strictly increasing , 

and g (x) -g (y) is strictly increasing in x#y, for all y.4
f(x)-f(y) 

Then Am =  C [a , b  ].

Proof: Observe that, if x < y < z, then

g (x)-g(y) < g(z)-g(y)
f(x) - f(y) - f(z)-f(y) · 

Therefore, there is a function (not necessarily continuous) a so that 

lim 
z-+ y 

g(x)-g(y) ::; a(y)::; lim g(x)-g(y). 
f(x)-f(y) z-+y' f(x)-f(y) 

Moreover, a is strictly increasing, for if x < y < z: 

a(x) < g(y)-g(x) < g(y)-g(z) < a(z).
f (y)-f (x) f (y)-f (z) 

Consider �z (y ) = g (y ) -a(x ) f  (y ), and note �z is in A, and satisfies

4. The function (g (z)-g(y)) I (f (z)-f (y)) necessarily has left and right limits as x--> y, if (9) holds, for a<y<b.

(8) 

(9) 
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[ g(y)-g(x) ] Px(y)-PxCx) = (f (y)-f (x)) f (y)-f (x) 
- a(x)

with equality if and only if y = x. Thus, if v o= Ox, 

rPxCY)dv(y) > rPxCx)dv (y) =PxCx). a a 

Consequently, (5) is satisfied Q.E.D. 

<! 0, 

Remark: If f and g are twice differentiable, (8) and (9) reduce to f' > 0 and (g' If ')' > 0, which are

easy to check, as we illustrate in the following example. 

Example 7: Suppose a random variables has cumulative distribution functions v for s E [0,1]. An
economic agent who knows v is to be offered a menu {z;} of payments. This agent chooses the

charge with the least expected value: 

p (v) = min J1 z;(s )vs v -1ds.
1 ::; ;  �n o 

Is the set of such charges dense in C [0, l]? That is, if the agent's value of an object for sale

is n(v), is there a menu {z;(s)} that approximately charges the agent his value?

The answer is yes. Consider 

A ={f :f(v)=J1z(s)vsv-Ids ,zEC[O,l]}. 0 

Note that A contains 1 (using z = 1),f (v) = v I (v + 1) (for z (s) = s )), and g (v) = v I (v+2) (for

z (s) = s2). It is easily verified that! and g satisfy the hypotheses of the corollary, so Am = C [0, l]. 
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