Mathematik A: Übungsblatt 3

Die Mathematik handelt ausschließlich von den Beziehungen der Begriffe zueinander ohne Rücksicht auf deren Bezug zur Erfahrung. A. Stein

Aufgabe 1. Berechnen Sie für die komplexen Zahlen $z_1 = 1 + tj$ und $z_2 = \frac{1}{3} - 4j$ mit $t \in \mathbb{R}$ folgende Ausdrücke:

1)
$$z_1 - z_2$$
, 2) $\frac{z_1}{z_2}$, 3) $z_2 \cdot \overline{z_1}$ 4) $|z_1|$, 5) $|z_2|$.

Aufgabe 2. Berechnen Sie alle komplexen Lösungen der folgenden Gleichungen. (Rechnen Sie kartesisch):

- (a) $z^2 + z + 4 = 0$,
- (b) $z^2 = -3 + 4i$.

Aufgabe 3. (a) Berechnen Sie Real- und Imaginärteil der Zahlen $\zeta_k = e^{j\frac{\pi}{6}k}$ für $k = 0, 1, \dots, 6$ und skizzieren Sie sie in der komplexen Zahlenebene.

(b) Berechnen Sie die Polarform der komplexen Zahl $\frac{(-1+\sqrt{3}j)^2}{(2\sqrt{3}+2j)^4}$.

Aufgabe 4. Bestimmen Sie die Umkehrfunktion von $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$,

$$f(x) = \frac{e^x + 1}{e^x - 1}.$$

Bonusaufgabe (5 Punkte)

- (i) Bestimmen Sie die Umkehrfunktion von $f:]-\infty, -2] \to \mathbb{R}, \ f(x) = \sqrt{\frac{x^2-4}{x^2+7}}$.
- (ii) Berechnen Sie Real- und Imaginärteil sowie die Polarform folgender komplexer Zahlen:

$$z = (-\sqrt{3} + \sqrt{3}j) \cdot (\sqrt{2} - \sqrt{6}j), \qquad w = \frac{-\sqrt{5} - \sqrt{15}j}{3 - \sqrt{3}j}.$$

Besprechung dieses Blattes in den Übungen von Montag, 06.11.17 bis Freitag, 10.11.17 **Abgabe** der Bonusaufgabe bis Dienstag, 14.11.17, 16 Uhr