Advanced Statistics – Exercise 5

Let X_1, X_2, \ldots, X_n be a random sample from a density f with mean μ and finite variance σ^2 .

- 1. Consider the estimator $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Derive $E[\overline{X}]$ and $V[\overline{X}]$.
- 2. Consider the estimators

$$\hat{\sigma}_{A}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$\hat{\sigma}_{A}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$\hat{\sigma}_B^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Derive $E[\hat{\sigma}_A^2]$ and $E[\hat{\sigma}_B^2]$.

Is one of the estimators $\hat{\sigma}_A^2$ or $\hat{\sigma}_B^2$ an unbiased estimator for the variance σ^2 ?

3. Consider the random variable $Y_n = \frac{1}{\sqrt{n}\sigma}(\sum_{i=1}^n X_i - n\mu)$. Show that the third moment $E(Y_n^3) \to 0$ as $n \to \infty$.