Ohne Registrierung möglich: Stell deine Frage
Mathelounge.de ist das derzeit beste Mathe-Forum für Schüler und Studenten. Hier findet ihr eine motivierte Community, die eure Probleme schnell löst und eure Fragen verständlich beantwortet. Erspart euch viele Stunden der Nachhilfe und nutzt das kostenlose Matheforum, um eure schwierige Mathematik-Aufgabe einfach lösen zu lassen. Probleme bei Hausaufgaben? Wir helfen kostenlos.

Warum ist (2^(log2(x)) = x ?

0 Daumen
287 Aufrufe
Wie kann man (2^(log2(x)) umformen damit x rauskommt? Ich habe es schon mit allen möglichen Potenzgesetzen versucht, aber komme im Moment nicht drauf. Ich steh gerade wirklich auf dem Schlauch...

Hat jemand einen Vorschlag?
Gefragt 14 Sep 2012 von Gast jd2111

2 Antworten

+1 Punkt

Vorab ist wichtig, dass du den Logarithmus wirklich verstehst: log2(x) errechnet uns den Exponenten n, den wir brauchen, um 2 zu potenzieren, sodass x herauskommt. 2n = x Siehe auch Grafik:

logarithmus bezeichnungen begriffe

Du kannst also n mit log wie folgt ersetzen (x ist der Numerus, also das Ergebnis der Potenz):

n = log2(x)

2n = 2log2(x) = x

 

Kennst du schon das Video "Einführung zum Logarithmus"?

Quelle: Lektion Mathe G23: Logarithmus + Logarithmengesetze

Beantwortet 14 Sep 2012 von Matheretter Experte V
0 Daumen

 

Das folgt eigentlich direkt aus der Definition des Logarithmus. Da gibts gar nicht zu rechnen. Potenzieren und Logarithmieren mit der gleichen Basis sind Umkehroperationen. Ähnlich wie Multiplizieren und Dividieren.

Wenn man unbedint gleich mit allen Logarithmengesetzen dahinter will, kann man schon rechnen (soviel man will)

z.B.

Logarithmusdefinition

 

So resultiert praktisch 1=1. Nun kann man von unten anfangen und die erste Gleichung 'beweisen'.

 

Für weitere Umformungen der Rechnung, falls nötig, unten noch der Text aus dem Formeleditor.

{ 2 }^{ log_{ 2 }^{ \quad  }{ x } }\quad =\quad x\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad |\quad log_{ 2 }\quad links\quad und\quad rechts\quad logarithmieren\\ log_{ 2 }(\quad { 2 }^{ log_{ 2 }^{ \quad  }{ x } }\quad \quad )\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad log_{ 2 }\quad x\quad \quad \quad \quad \quad \quad \quad \quad \\ log_{ 2 }x\quad log_{ 2 }\quad { 2 }^{ { 1 } }\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \quad \quad \quad \quad \quad \quad log_{ 2 }x\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad |\quad :log_{ 2 }\quad x\\ log_{ 2 }\quad { 2 }^{ { 1 } }\quad =\quad \quad 1\\ \\ 

Beantwortet 14 Sep 2012 von Lu Experte LXXXIII

  Ein anderes Problem?
Stell deine Frage

Ähnliche Fragen

0 Daumen
2 Antworten
0 Daumen
1 Antwort

Willkommen bei der Mathelounge! Stell deine Frage sofort und ohne Registrierung

x
...