Aufgabe: Sei A eine Menge, deren Elemente selbst wieder Mengen sind. Setze B = ∪ (aller D ∈ A) . ZeigenSie: Ist C eine Menge, so dass C ⊆ B und D ⊆ C für alle D ∈ A, so ist B = C.
Problem/Ansatz:
Ich habe eine Lösung (angehängt) bei der ich nicht sicher bin, ob das die Aufgabe löst und einen Ansatz, bei dem ich mir sehr unsicher bin ob man mit diesem auch in der Mathematik argumentieren könnte.
Mein Ansatz wäre zu sagen, dass für alle D1-Dn gilt: D1-Dn ⊆ C (Da so auch B definiert ist) und somit C = B sein muss.
Text erkannt:
Da \( B=U_{\partial \varepsilon A} D \), enthält Balle Elemente aus den Mengen in \( A\left(d_{a} D \varepsilon A\right) \).
Somit gilt \( A \subseteq B \), aber auch \( B \subseteq A \), da \( A \) alle Teilmengen von \( B \) enthält und \( B \) die Menge ist, welche alle Elemente der Mengen van A enthält.
Bsp: \( A=\{\{1,2\},\{3,4\} ; B=\{1,2,3,4\} \)
\( \{1,2,3,4\} \subseteq\{\{1,2\},\{3,4\}\} \), da alle Elemente aus \( B \) in den
Teilmengen in A enthalten sind.
Somit gilt durch \( A \subseteq B \) und \( B \subseteq A \Rightarrow B=A \)
Sei eine zusätzliche Menge \( C \), für die gilt \( D \subseteq C, C \subseteq B \) und somit \( C \subseteq A \).
\( \Rightarrow \) Wenn \( C=A \), dann \( B \subseteq A \) and \( A \subseteq C \Rightarrow B \subseteq C \).
Somit wissen wir \( C \subseteq B \) und \( B \subseteq C \) und daraus \( \Rightarrow B=C \)
\( \Rightarrow \) Wenn \( C \subsetneq A \), dann: \( C \subsetneq B \) and \( B \notin C \Rightarrow B \neq C \)
Somit ist gezeigt, dass es eine Menge \( C \) gibt, für die gilt \( C \subseteq B \) und \( D \subseteq C \) und für die zusätzlich gellen muss \( A=C \), damit \( B=C \) gellen kann.