Training zur Abstandsbestimmung:
a) Eine dreiseitige Pyramide hat die Grundfläche \( \mathrm{ABC} \) mit \( \mathrm{A}=(2|2| 3) \), \( B=(0|-4| 3) \) und \( C=(2|-2| 1) \) und die Spitze \( S=(7|-4| 6,5) \).
Berechnen Sie die Höhe.
b) Zeigen Sie, dass \( \left.\mathrm{E}: \vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)+r \begin{array}{l}4 \\ 0 \\ 1\end{array}\right)+5\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right) \) und \( g: \vec{x}=\left(\begin{array}{r}2 \\ 4 \\ -4\end{array}\right)+t \left( \begin{array}{l}0 \\ 2 \\ 1\end{array}\right) \) zueinander parallel sind. Berechnen Sie deren Abstand.
c) Welche Ebene ist vom Ursprung am weitesten entfernt?
\( E_{1}: \vec{x}=\left(\begin{array}{r}-5 \\ -7 \\ 3\end{array}\right)+r\left(\begin{array}{r}2 \\ 1 \\ -4\end{array}\right)+s\left(\begin{array}{l}3 \\ 6 \\ 1\end{array}\right) \)
\( \mathrm{E}_{2}:\left(\left( \begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)-\left(\begin{array}{r}-4 \\ 4 \\ 5\end{array}\right)\right) \cdot\left(\begin{array}{r}3 \\ -3 \\ 0\end{array}\right)=0 \)
\( E_{3}: 2 x_{1}-2 x_{2}+4 x_{3}=12 \)
d) Zeigen Sie, dass sich die Ebene E: \( x_{1}-4 x_{2}+x_{3}=12 \) und die Gerade \( \mathrm{g}: \vec{x}=\left(\begin{array}{r}9 \\ 1 \\ 10\end{array}\right)+t\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right) \) schneiden.
Wie viele Punkte auf \( g \) sind 3 LE von \( E \) entfernt?