0 Daumen
2,5k Aufrufe

Ich hab hier gerade zufällig eine Aufgabe entdeckt... Stimmen meine Rechenwege & Endergebnisse ?

Eine Urne enthält 6 schwarze, 5 rote und 4 weiße Kugeln. Nun werden 3 Kugeln mit einem Griff aus der Urne gezogen. Berechne die Wahrscheinlichkeiten folgender Ereignisse :

A: alle Kugeln sind von gleicher Farbe
B: höchstens 2 Kugeln sind von gleicher Farbe
C: genau eine Kugel ist weiß
D: mindestens eine Kugel ist rot

----------------------------------------------------------------------------------------------------------------------------

A: (6/15*5/14*4/13) + (5/15*4/14*3/13) + (4/15*3/14*2/13) = 34/455 = 7,47 %

B: 1- P(alle Kugeln sind von gleicher Farbe) = 100 - 7,47 % = 92,53 %

C: 6/15*5/14*4/13 * 3 = 4/91 * 3 = 12/91 =13,19 %

D: 1 - P (keine Kugel ist rot) = 1 - (6/15*5/14*4/13 * 8) = 1- 32/91 = 59/91 = 64,84 %

@D: gibt es einen Tipp auf die Permutationen (SSS,SSW, SWS,SWW,WSS,WSW,WWS,WWW) zu kommen ? Ich habe alle Möglichkeiten aufgeschrieben, bei anderen Aufgaben könnte dies aber sehr zeitaufwändig sein, könnte ich mir vorstellen.

Avatar von

2 Antworten

0 Daumen
wenn du nur zwei Ausgänge ( S W ) hast und n Versuche, dann
ist es immer 2^n.
Avatar von 289 k 🚀
Auf was nimmst du genau Bezug zu dem was ich  geschrieben habe ?
Stimmen meine Ergebnisse ?

Ich dachte in dem Satz

Ich habe alle Möglichkeiten aufgeschrieben, bei anderen Aufgaben könnte dies aber sehr zeitaufwändig sein, könnte ich mir vorstellen.

ging es dir um die Anzahl der Möglichkleiten.

Auch...vielen herlichen Dank.

Ich wollte aber auch meine Erbenisse a)-d) bestätigt bekommen...

Könntest du/sie mir die c) + d) erklären- ich habe ja ein anderes Ergebnis raus. - Wurde hier mit der binomialverteilung gerechnet ?

0 Daumen

Ich hab hier gerade zufällig eine Aufgabe entdeckt... Stimmen meine Rechenwege & Endergebnisse ? 

Eine Urne enthält 6 schwarze, 5 rote und 4 weiße Kugeln. Nun werden 3 Kugeln mit einem Griff aus der Urne gezogen. Berechne die Wahrscheinlichkeiten folgender Ereignisse : 

A: alle Kugeln sind von gleicher Farbe 

6/15·5/14·4/13 + 5/15·4/14·3/13 + 4/15·3/14·2/13 = 7.47%
B: höchstens 2 Kugeln sind von gleicher Farbe 

1 - 7.47% = 92.53%
C: genau eine Kugel ist weiß

4/15·11/14·10/13·3 = 48.35%
D: mindestens eine Kugel ist rot 

1 - 10/15·9/14·8/13 = 73.63%

Avatar von 487 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community