Man nennt
$$ \vec{y}^{\prime}=A \vec{y}, \quad A \in \mathbb{C}^{n \times n}, $$
ein lineares Differentialgleichungssystem erster Ordung mit konstanten Koeffizienten. Dabei sind die Elemente von \( \vec{y} \) Funktionen von \( x \), und \( \vec{y}^{\prime} \) ist die komponentenweise Ableitung nach \( x \), d.h.
$$ \vec{y}(x)=\left(\begin{array}{c} y_{1}(x) \\ \vdots \\ y_{n}(x) \end{array}\right), \quad \vec{y}^{\prime}(x)=\left(\begin{array}{c} y_{1}^{\prime}(x) \\ \vdots \\ y_{n}^{\prime}(x) \end{array}\right) $$
a) Rechnen Sie nach: Ist \( \lambda \) ein Eigenwert von \( A \) mit zugehörigem Eigenvektor \( \vec{u} \), so ist
$$ \vec{y}(x)=\mathrm{e}^{\lambda x} \vec{u} $$
eine Lösung des DGL-Systems.
b) Zeigen Sie: Jedes \( \vec{y} \) der Form
$$ \vec{y}(x)=\mathrm{e}^{A x} \vec{b}, \quad \vec{b} \in \mathbb{C}^{n} \text { beliebig, } $$
ist eine Lösung des DGL-Systems. Welchen Wert nimmt \( \vec{y}(0) \) an?