Eine Serienproduktion von Glühbirnen hat einen Ausschussanteil von 4%. Aus der laufenden Produktion wird eine Stichprobe vom Umfang 38 entnommen.Mit welcher Wahrscheinlichkeit enthält diese Stichprobe 3 oder mehr defekte Glühbirnen? (Geben Sie das Ergebnis in Prozent an.)
Z.B. mit der Binomialverteilung:
\(P(X\ge3)=\displaystyle\sum\limits_{i=3}^{38}\displaystyle\binom{38}{i}\cdot 0.04^i\cdot (1-0.04)^{38-i}\approx 0.1936=19.36\%\)
Wie hast du auf 0.1936 gekommt? Wenn ich mit Binomialverteilung mache, dann komme ich auf 0.94...
Du kannst es eig. so in den Taschenrechner eingeben.
Die Summe und im Argument der Summe von i bis Obergrenze steht dann *Binomialkoeffizient* * Wahrscheinlichkeit hoch i * Gegenwahrscheinlichkeit hoch (n-i)
Wie kommst du konkret auf 0,94?
Ich kann es mir inzwischen denken. Du hast die Wahrscheinlichkeit für 0 bis 3 defekte Glühbirnen ausgerechnet.
Du solltest aber "mindestens 3" (das heißt "3 bis 38" und ist das Gegenereignis von "0 bis 2") betrachten.
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos