Berechnen Sie Ober- und Untersummen
(a) von \( f:[0, \pi] \rightarrow \mathbb{R}, f(x)=\sin (x) \) bezüglich der Zerlegung \( Z=\left\{0, \frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \pi\right\} \)
(b) von \( g:[0,1] \rightarrow \mathbb{R}, g(x)=3 x^{2}+2 x \) bezüglich der äquidistanten Zerlegung \( Z_{n}= \) \( \left\{x_{0}, \ldots, x_{n}\right\} \) von \( [0,1] \) für allgemeines \( n . \) Wie groß muss \( n \) gewählt werden, damit \( O\left(Z_{n}, g\right)-U\left(Z_{n}, g\right)<\frac{1}{1000} \) gilt?