Aufgabe 9.6 (2 Punkte): Ein fairer Würfel werde \( n \) -mal geworfen. Zeigen Sie mittels der Chebyshev-Ungleichung, dass die Wahrscheinlichkeit, dass die Anzahl geworfener Sechser zwischen \( \frac{1}{6} n-\sqrt{n} \) und \( \frac{1}{6} n+\sqrt{n} \) liegt, mindestens \( \frac{31}{36} \) beträgt. Lösung: \( X \) ist \( \operatorname{Bin}\left(n, \frac{1}{6}\right) \) -verteilt, also \( \operatorname{Var}(X)=\frac{5}{36} n . \) Damit ist
$$ \mathrm{P}\left(\left|X-\frac{n}{6}\right| \leq \sqrt{n}\right)=1-\mathrm{P}\left(\left|X-\frac{n}{6}\right|>\sqrt{n}\right) \geq 1-\frac{\operatorname{Var}(X)}{n}=\frac{31}{36} $$
wobei für die Abschätzung die Chebyshev-Ungleichung verwendet wurde.
Warum ist 1-P(X-1/n > wurzel (n) größer gleich 1- Var(x)/n ? Verstehe die Ungleichung nicht :)