Aloha ;)
Es gibt die Regel von L'Hospital, die hier im Forum auch gerne "Krankenhaus-Regel" genannt wird. Diese sagt grob: Wenn Zähler und Nenner bei einem Grenzwert beide unabhängig voneinander gegen \(0\) oder beide unabhängig voneinander gegen \(\infty\) konvergieren, kann man Zähler und Nenner unabhängig voneinander ableiten, ohne den Grenzwert des Bruches zu ändern.
Hier haben wir offensichtlich so einen Fall, wo Zähler und Nenner für \(x\to0\) beide gegen \(0\) konvergieren. Wir wenden daher die Krankenhaus-Regel an:$$\lim\limits_{x\to0}\frac{x-\sin x}{x^2e^x}=\lim\limits_{x\to0}\frac{1-\cos x}{2xe^x+x^2e^x}$$Das hat uns noch nicht wirklich weiter gebracht, denn auch nach dem Ableiten konvergieren Zähler und Nenner noch beide gegen \(0\). Also muss der Patient nochmal ins Krankenhaus. Wir wenden die Regel erneut an und rechnen weiter:
$$=\lim\limits_{x\to0}\frac{\sin x}{2e^x+2xe^x+2xe^x+x^2e^x}=\lim\limits_{x\to0}\frac{\sin x}{2e^x+4xe^x+x^2e^x}=\frac{0}{2+0+0}=0$$