Aufgabe:
1. Sei n ∈ N. Zeige, dass der Raum Cn als Vektorraum über R aufgefasst werden kann. Die Addition (2+2*) und skalare Multiplikation sind dabei wie für einen allgemeinen Vektorraum V = Kn
definiert, wobei die entsprechenden Skalare λ aus R sind. Bestimme eine Basis und die Dimension
dieses Vektorraumes.
2. Ist der Raum Rn auch ein Vektorraum über Q? Welche Dimension hätte dieser?
Problem/Ansatz:
Bei der 1. Aufgabe hab ich jetzt als Ansatz einfach die Gruppenaxiome, und eben die Rechenregeln für einen vektorraum und als Dimension hab ich dann am Ende 2*n rausbekommen.
Nur bei der Basis bin ich mir irgendwie nicht ganz sicher bei, also wie man diesen in Abhängigkeit von n angeben kann, weil die Anzahl der Elemente in der Basis ja von dem n abhängen.
Und zu Aufgabe 2. dazu hätte ich den Ansatz, dass R ein unendlich dimensionaler vektorraum über Q ist. Aber wie macht man das mit R^n? Ist das wieder ein unendlich dimensionaler VR?