Aloha :)
$$\frac{1-4i}{5+i}=\frac{(1-4i)\pink{(5-i)}}{(5+i)\pink{(5-i)}}=\frac{5-20i-i+4i^2}{25-i^2}\stackrel{(i^2=-1)}{=}\frac{1-21i}{26}=\frac{1}{26}-\frac{21}{26}\,i$$
$$\frac{-3}{4i}+\frac{2}{5i}\stackrel{(i^2=-1)}{=}\frac{3i^2}{4i}+\frac{-i^2\cdot2}{5i}=\frac{3i}{4}+\frac{-2i}{5}=\left(\frac34-\frac25\right)i=\frac{7}{20}\,i$$
$$(3i)^3=3^3\cdot i^3=27\cdot i^2\cdot i\stackrel{(i^2=-1)}{=}-27\,i$$