Hallo,
ein Gerade in Parameterform (so wie hier) schneidet genau dann eine der Koordinatenachsen, wenn das Verhältnis von zwei Koordinaten aus den Aufpunkt \((3|\,6|\,2)\) und aus dem Richtungsvektor \((2|\,4|\,-1)\) überein stimmt.
In diesem Fall wird man gleich bei den ersten beiden Koordinaten fündig:$$g: \quad x = \begin{pmatrix}{\color{red}3}\\ {\color{red}6}\\ 2\end{pmatrix} + s \cdot \begin{pmatrix}{\color{red}2}\\ {\color{red}4}\\ -1\end{pmatrix} \implies 3\div 6 = 2 \div 4$$Daraus folgt, dass \(g\) die verbleibende Koordinatenachse \(z\) alias \(x_3\) schneidet.
Nochmal die anderen prüfen (obwohl das in diesem Fall nicht notwendig ist)$$3 \div 2 \ne 2 \div -1 \\ 6 \div 2 \ne 4 \div -1$$Der Faktor ist hier \(s = -3/2\), mit dem der Richtungsvektor multipliziert werden muss, damit nach Addition zum Aufpunkt für die beiden ersten Koordinaten \(0\) heraus kommt:$$g: \quad x(1,5) = \begin{pmatrix}3\\ 6\\ 2\end{pmatrix} - \frac{3}{2} \begin{pmatrix}2\\ 4\\ -1\end{pmatrix} = \begin{pmatrix}0\\ 0\\ 3,5\end{pmatrix}$$Gruß Werner