Aufgabe:
in unserem Skript steht dieser Hinweis:
\(f(x):=x_{1} \cdot x_{2} \cdot \frac{x_{1}^{2}-x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}, \quad x \neq 0\)
\(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(0) \neq \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(0)\)
welcher besagt, dass die Reihenfolge der Ableitung wichtig ist.
Problem/Ansatz:
Wenn ich die Ableitungen in der entsprechenden Reihenfolge berechne, dann kommt bei mir das Gleiche raus.
Hier die ausgetippte Formel für wolframalpha damit ihrs einfacher habt: ∂/∂x(∂/∂y(x^2-y^2)/(x^2+y^2)*xy)
Versehe ich die Aussage falsch?
Wir haben gerade eine ähnliche Aufgabe:
\( f(x, y)=\left\{\begin{array}{ll}x y \cdot \frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right. \)
Hier wird wie oben nach der Ungleichheit von \(\frac{\partial^{2} f}{\partial x \partial y}(0,0) \neq \frac{\partial^{2} f}{\partial y\partial x}(0,0)\) gefragt. Die kann ich ja nicht zeigen, wenn die beiden Ableitungen gleich sind. Inwieweit spielt hier die Definition von 0 falls x=0 eine Rolle? Das ändert sich doch erst nicht mit den Ableitungen, denn 0'=0