Aufgabe:
(a) Sei f : R → R stetig differenzierbar. Zeigen Sie, dass für jede Lösung der Differentialgleichung
x˙ = f(x)
genau eine der folgenden Aussagen zutrifft:
(i) x ist streng monoton wachsend.
(ii) x ist streng monoton fallend.
(iii) x ist konstant.
(b) Bleibt die Aussage in (a) richtig, wenn f : R → R nur als stetig vorausgesetzt wird?
Problem/Ansatz:
Ich habe mir als Beispiel e^x angeschaut, da das die Bedingungen erfüllt und würde dadurch auf den Schluss kommen, dass i) richtig ist, ich wüsste jetzt aber echt nicht, wie ich das beweisen kann.
Mein Ansatz war: \( \frac{dx}{dy} \)=f(x) => dy=dx*f(x) aber das passt meiner meinung nicht und ich wüsste auch nicht wie man da dann auf den gewünschten schluss kommen würde.