Die explizite Differentiation, so wie man es vielleicht noch aus der Schule kennt ist ja bspw. f(x) = 2x+4-3. Kurz gesagt: Ich habe in meiner Funktion immer nur eine Variable.
Durch das Thema impliziertes differenzieren steige ich noch nicht ganz durch. Wenn ich das richtig verstanden habe, habe ich also eine Funktion, die nun von mehr als einer Variable abhängt.
Gegeben sei folgende Gleichung: y3+3x2y = 13. Diese Gleichung kann jetzt also nicht als Funktion von einer abhängigen Variablen dargestellt werden. Eigentlich soweit logisch, sie enthält ja schließlich auch neben dem x noch ein y.
Durch ein paar Recherchen habe ich zumindest rausgefunden, dass man zunächst nach einer der Variablen ableitet, bzw. das man eine Variable durch eine neue Funktion ausdrückt. Soll das heißen, ich betrachte zunächst beide Seiten der Gleichung getrennt? Die Ableitung der rechten Seite wäre somit 0, da 13 eine Konstante ist.
Die linke Seite kann ich nun also wie folgt ausdrücken:
f(x) = y3+3x2y wobei die vorherige Variable y jetzt nur eine gewöhnliche Konstante darstellt?
Wenn ich die nun explizite Funktion ableite fällt doch y3 weg, da dies eine Konstante darstellt, die additiv mit dem Rest verbunden ist. In der Lösung wird y3 aber mit der Kettenregel abgeleitet.
Wäre nett wenn mir jemand weiterhelfen würde :-)