Ich entschuldige :P
Seien $$ Z = \{(x,y,z) \in R^3 : 1 < x^{2} + y^{2} < 4 , | z |< 1\} $$
Das Vektorfeld ist gegeben durch
$$f(x,y,z) = ( x cos(z)^{2} + x^{2} yz , ysin(z)^{2} + 1, -xyz^{2} + e^{x^{2} + y^{2}} ) $$
daraus folgt
$$ div(f) = 1 $$
bei dem ersten Integral folgt mit Satz von Gauß 6*π. Wo liegt jetzt der Unterschied zum zweiten Integral mit den beiden Mantelflächen? Wie muss ich die Grenzen ziehen um es unter Verw. von Zylinderkoord. zu berechnen?