Aufgabe:
Hey Leute ich habe hier ein Mathe-Rätsel, bei dem ich im Moment nicht weiter komme...
Zwei Hirten treiben ihre x Schafe in die Stadt und verkaufen sie dort für jeweils x Euro. Für den Erlös kaufen sie eine ungerade Anzahl an Hühnern. Ein Huhn kostet 12 Euro. Für den Rest können sie kein Huhn mehr kaufen, aber es reicht genau für eine Gans. Der Hirte, der beim Teilen die Gans erhält, bekommt vom anderen zum Ausgleich dessen Mundharmonika geschenkt, damit am Ende beide den gleichen Gewinn gemacht haben.
Alle Preise sind natürliche Zahlen.
Nun soll ich sagen wie viel die Mundharmonika gekostet hat.
Was ich bereits habe ist:
Erlös der Schafe: \( x^{2} \) und Preis g der Gans: 0 < g = \( x^{2} \) (mod 12) < 12
Wert m der Mundharmonika: m = \( \frac{12-g}{2} \)
Nun habe ich eine Tabelle angefertigt mit den möglichen Lösungen, wenn man \( x^{2} \) (mod 12) rechnet. Dann erhält man als mögliche Lösungen 0, 1, 4 und 9. Die 0 fällt weg, da g>0. Nun ist es so, dass 1 und 9 nur als Ergebnis rauskommen, wenn x ungerade ist und bei geradem x stets 0 oder 4, also 4 rauskommt. Aber jetzt weiß ich leider nicht, wie ich zeigen kann, dass x gerade sein muss.
Hoffe es kann mir jemand helfen. Danke