Aloha :)
Der Binomialkoeffizient \(\binom{n}{k}\) wird hier definiert als:$$\binom{n}{k}\coloneqq\frac{n!}{k!\cdot(n-k)!}\quad;\quad0\le k\le n\quad;\quad k,n\in\mathbb N_0$$
Die Eigenschaften (a) und (b) rechnet man schnell nach:
$$\binom{n}{k}=\frac{n!}{k!\cdot{(n-k)!}}=\frac{n!}{(n-k)!\cdot k!}=\frac{n!}{(n-k)!\cdot(\underbrace{n-(n-k)}_{=k})!}=\binom{n}{n-k}\quad\checkmark$$$$\binom{n}{1}=\frac{n!}{1!\cdot(n-1)!}=\frac{n\cdot(n-1)!}{1\cdot(n-1)!}=n\quad\checkmark\quad;\quad\binom{n}{0}=\frac{n!}{0!\cdot(n-0)!}=\frac{n!}{1\cdot n!}=1\quad\checkmark$$
Bei Eigenschaft (c) müssen wir etwas mehr rechnen:
$$\binom{n-1}{k-1}+\binom{n-1}{k}=\frac{(n-1)!}{(k-1)!\cdot(\underbrace{(n-1)-(k-1)}_{=(n-k)})!}+\frac{(n-1)!}{k!\cdot( (n-1)-k )!}$$Wir erweitern, um die beiden Brüche auf den Hauptnenner zu birngen:$$\qquad=\frac{(n-1)!}{(k-1)!\cdot(n-k)!}\cdot\frac{k}{k}+\frac{(n-1)!}{k!\cdot(n-k-1)!}\cdot\frac{n-k}{n-k}$$ $$\qquad=\frac{(n-1)!\cdot k}{\underbrace{(k-1)!\cdot k}_{=k!}\cdot(n-k)!}+\frac{(n-1)!\cdot(n-k)}{k!\cdot\underbrace{(n-k-1)!\cdot(n-k)}_{=(n-k)!}}$$ $$\qquad=\frac{(n-1)!\cdot k}{k!\cdot(n-k)!}+\frac{\overbrace{(n-1)!\cdot n}^{=n!}-(n-1)!\cdot k}{k!\cdot(n-k)!}=\frac{(n-1)!\cdot k}{k!\cdot(n-k)!}+\frac{n!-(n-1)!\cdot k}{k!\cdot(n-k)!}$$Nun können wir beide Brüche addieren und danach den Zähler vereinfachen:$$\qquad=\frac{(n-1)!\cdot k+n!-(n-1)!\cdot k}{k!\cdot(n-k)!}=\frac{n!}{k!\cdot(n-k)!}=\binom{n}{k}\quad\checkmark$$