Hallo,
Willkommen in der Mathelounge!
Wie lautet der Lösungsweg zur Umkehrfunktion x/(1+2x) ?
.. indem man es eben nach \(x\) umstellt:$$\begin{aligned}f(x)&=\frac{x}{1+2x} &&|\, \cdot (1+2x) \quad x \ne -\frac12\\f(x)\cdot (1+2x)&= x \\f(x)+2f(x)x&= x &&|\,-2f(x)x\\f(x)&=x-2f(x)x\\f(x)&= x(1-2f(x)) &&|\,\div(1-2f(x)) \quad f(x)\ne \frac12\\\frac{f(x)}{1-2f(x)}&=x\end{aligned}$$
im Graphen siehst Du die Originalfunktion in blau und die Umkehrfunktion in rot
Wie man sieht ist die Umkehrfunktion aus \(f(x)\) entstanden, indem man den Graphen an der Winkelhalbierenden (schwarz gestrichelt) gespiegelt hat.
Gruß Werner