Hallo,
Schneiden sich die beiden Graphen von f(x) und f-1(x).
Ich vermute dann, dass \(f(x)\) folgendes ist$$f(x)= \frac{1}{2}(x+2)^3-1$$oder? Dann lass Dir die Graphen doch mal ausgeben:
Der Graph einer Funktion kann sich mit den Graphen der Umkehrfunktion nur auf der Winkelhalbierenden \(f(x)=x\) schneiden. Es reicht also aus, die Gleichung$$\frac{1}{2}(x+2)^3-1 = x$$zu lösen. Das ist hier die Suche nach den/der Nullstelle eines kubischen Polynoms.
Schaffst Du das? Die Lösung liegt ca. bei \(x \approx -3,77\). Eine 'glatte' Lösung gibt es nicht. Also entweder Newton-Verfahren oder die Cardanischen Formeln.
Gruß Werner