Aufgabe:
Text erkannt:
4. Die Funktion \( f: \mathbb{R}-\{0\} \rightarrow \mathbb{R} \),
\( f(x)=\frac{1-\cos ^{2} x}{x^{2}}, \)
ist stetig auf \( \mathbb{R}-\{0\} \). A priori ist sie durch obigen Ausdruck nicht für \( x=0 \) definiert. Kann man \( f \) stetig auf ganz \( \mathbb{R} \) fortsetzen? Mit anderen Worten: Existiert eine stetige Funktion \( g: \mathbb{R} \rightarrow \mathbb{R} \) mit \( g(x)=f(x) \) für alle \( x \neq 0 \) ? (Beweisen Sie Ihre Antwort.)
Problem/Ansatz:
meine Antwort war, dass es keine stetige Funktion gibt, ich glaube aber auch, dass man Umgang mit cos. falsch ist, idk, oder ist es richtig und es gibt keine?