\(f(x)= (x-4)^2 -1\) und \(k(x)= 2* (x-1)^2+1\)
\(f(x)=k(x)\)
\( (x-4)^2 -1=2 *(x-1)^2+1\)
\( (x-4)^2 =2 *[(x-1)^2]+2\)
\( x^2-8x+16 =2 *[x^2-2x+1]+2 |-16\)
\( x^2-8x =2 *[x^2-2x+1]-14 \)
\( x^2-8x =2 *x^2-4x+2-14 \)
\( x^2-8x =2 *x^2-4x-12 |-2x^2 \)
\( -x^2-8x =-4x-12 |+4x \)
\( -x^2-4x =-12 |*(-1) \)
\( x^2+4x =12 \)
\( (x+\frac{4}{2})^2 =12 +(\frac{4}{2})^{2} =16 |\sqrt{~~} \)
1.)\(x+2=4\)
\(x₁=2\)
2.)\(x+2=-4\)
\(x₂=-6\)
Nun noch \(f(2)\) und \(f(-6)\) berechnen.