Aufgabe:
Für alle n ∈ ℕ gilt 2n > n
Problem/Ansatz:
Ich verstehe einfach nicht wie diese gelbe 2 da hin kommt 2n+1 = 2n * 2 das verstehe ich noch wegen dem Potenzgestzten aber ich habe 2n * 2 > n wie kommen die auf die 2 vor dem n und warum genau 2 würde da auch was anderes stehen können?
Die Induktions Voraussetzung ist \(2^n>n\). Multiplizieren diese Ungleichung mit 2 und erhalte
$$2 \cdot 2^n > 2 \cdot n$$
Aber warum multipliziert man das mit 2?
Du hast eine Abschätzung für 2^n und brauchst eine Abschätzung für \(2 \cdot 2^n\). Dann liegt das doch nahe.
Im übrigen hat ein Beweis immer auch eine kreative Komponente-man muss sich etwas einfallen lassen. Man kann einen Beweis nicht errechnen.
Schau die komplette Antwort der KI an, da steht (hoffentlich) auch die Ind. Beh..
Du kannst deine Frage ja auch der KI stellen, oder/und sie bitten dir das Prinzip der vollständigen Induktion zu erklären.
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos