0 Daumen
1k Aufrufe

Aufgabe:

\( \frac{a-b}{a+b}-\frac{a^{2}-2 a b}{a^{2}-b 2} \)

Erweitern:

\( \frac{(a-b)(a-b)}{a^{2}-b^{2}} - \color{#F00}{ \frac{a^{2}-2 a b}{a^{2}-b^{2}} } \)

Zusammenrechen:

\( \frac{b^{2}}{a^{2}-b^{2}} \)

Mein Anliegen:

Das Ergebnis stimmt mit dem im Buch überein. Was mich verunsichert, hat war das negative Vorzeichen beim rot markierten Bruch. Dreht es die Vorzeichen im Zähler um? (Also wie beim Aus/Einklammern)

Avatar von

1 Antwort

0 Daumen

Dein Ergebnis stimmt.

Nach der Erweiterung auf den Hauptnenner  sieht der Zähler so aus:

a²-2ab+b²- a²+2ab  zusammen gefasst ⇒ b²

Avatar von 40 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community