0 Daumen
2,2k Aufrufe

Ich muss eine Kurvendiskussion zu der Dunk: f(x)= 1/2(ex+e^-x) durchführen, aber ich scheitere schon bei den Ableitungen:

Zuerst habe ich, die Klammer aufgelöst:

f(x)=1/2ex +1/2e^-x

dann wollte ich das mit der Produktregel ableiten f'(x)=u(x)*v'(x)+v(x)*u'(x)  also f'(x)=1/2ex*(-1/2e^-x)+1/2e^-x*1/2ex  weiter zusammengefasst: f'(x)=1/2ex(-1/2e^-x+1/2ex)

hier habe ich schon das Gefühl,  dass was falsch ist.

Avatar von

1 Antwort

0 Daumen

wieso benutzt du denn die Produktregel? Die Produktregel benutzt man nur, wenn die Funktion, die du ableiten willst, sich in zwei Faktoren, die  multipliziert werden, unterteilen lässt.

Bei f(x) = 1/2ex + 1/2e-x geht das jedoch nicht so einfach.

Eine Summe abgeleitet ergibt immer die Ableitungen der einzelnen Summanden addiert.

Also berechnest du getrennt die Ableitungen von 1/2ex und 1/2e-x und addierst sie dann.

Für 1/2ex ändert sich beim Ableiten nichts.

Bei 1/2e-x kommt beim Ableiten nur das Minuszeichen dazu: -1/2e-x

Also:

f(x) = 1/2ex - 1/2e-x

Ich hoffe, du kannst meinen Lösungsweg nachvollziehen.

LG derhaberer

Avatar von 1,1 k

Und ich muss immer so kompliziert denken -.-

vielen Dank :)

Bleibt denn die 2. Ableitung dann gleich?

Nein, die 2. Ableitung ist:

f''(x) = 1/2ex - (-1/2e-x) = 1/2ex + 1/2e-x


Ok danke. Wir hatten noch nie eine Kurvendiskussion mit e Funktionen gemacht, aber ich habe mir das gerade angeschaut und weiß,  dass man für die Symmetrie f(-x) berechnen muss. Das wäre dann f(-x)=1/2*e^-x+1/2*ex

das jetzt, dass es keine Symmetrie gibt?


Und dann wüsste ich gerne, wie man das Grenzwertverhalten berechnet

Ein anderes Problem?

Stell deine Frage