0 Daumen
365 Aufrufe

Aufgabe Untersuchen Sie die folgenden Reihen auf Konvergenz:
(a) \( \sum \limits_{n=1}^{\infty}(-1)^{n+1}(\sqrt{n+1}-\sqrt{n}) \)
(b) \( \sum \limits_{n=1}^{\infty} \frac{n !}{n^{n}} \)
(c) \( \sum \limits_{n=0}^{\infty} \frac{n^{42}}{e^{n}} \)
(d) \( \sum \limits_{n=1}^{\infty} \frac{8^{n}}{\sqrt{n !}} \)
(e) \( \sum \limits_{n=1}^{\infty} \frac{1}{n^{2}}\left(\begin{array}{l}n \\ 2\end{array}\right) \)
(f) \( \sum \limits_{n=1}^{\infty} \frac{3^{n}}{4^{n}+5^{n}} \).

also wie kann man die Antwort begründen

Avatar von

Versuche doch mal, die Dir bekannten Kriterien für Reihenkonvergenz anzuwenden.

Und wie geht man bei b) vor? Ich habe das mit dem Quotientenkriterium gemacht und komme am Ende bei einem Grenzwert von 1 raus...

Mit Majorantenkriterium: Für \(n>2\) gilt$$\quad0<\frac{n!}{n^n}=\frac{1{\cdot}2}{n{\cdot}n}\cdot\underbrace\frac{3{\cdot}4\cdots n}{n{\cdot}n\cdots n}_{\le1}\le\frac2{n^2}.$$

1 Antwort

0 Daumen

a) Erweitere zur 3. binom. Formel!

Avatar von 37 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community