0 Daumen
359 Aufrufe

Aufgabe:


Wie kommt man darauf, dass 5nlogn5 \sqrt{logn^{5}} = 55 \sqrt{5} *nlogn \sqrt{logn} ist?


logn = log von n zur Basis 2


Ist es eine Logarithmusregel?

Avatar von

Meinst du du die 5n-te Wurzel?
5n-te Wurzel aus a = a^(1/(5n))

1 Antwort

0 Daumen
 
Beste Antwort

Aloha :)

Das folgt aus dem Logarithmen-Gesetz log(ab)=blog(a)\log(a^b)=b\cdot\log(a) sofort:5nlog(n5)=5n5log(n)=5n5log(n)5n\cdot\sqrt{\log(n^5)}=5n\cdot\sqrt{5\cdot\log(n)}=5n\cdot\sqrt5\cdot\sqrt{\log(n)}

Avatar von 153 k 🚀

Ein anderes Problem?

Stell deine Frage