0 Daumen
317 Aufrufe

Task:

Capture.PNG

Text recognized:


Can someone help me with the integration?



Problem/approach:

Avatar von

2 Antworten

0 Daumen

You can simplify the first part of the integrand by using Pythagorean trigonometric identity. So it becomes u(2u2)+u(2u2)3sin(v)-u(2-u^2)+u(2-u^2)^3\sin(v).

Avatar von 21 k
0 Daumen

Aloha :)

I=u=11  v=02π[u(2u2)cos2(v)u(2u2)sin2(v)+u(2u2)3sin(v)]dudvI=\int\limits_{u=-1}^1\;\int\limits_{v=0}^{2\pi}\left[-u(2-u^2)\cos^2(v)-u(2-u^2)\sin^2(v)+u(2-u^2)^3\sin(v)\right]\,du\,dvI=u=11  v=02π[u(2u2)(cos2(v)+sin2(v))=1+u(2u2)3sin(v)]dudv\phantom I=\int\limits_{u=-1}^1\;\int\limits_{v=0}^{2\pi}\left[-u(2-u^2)\cdot\underbrace{(\cos^2(v)+\sin^2(v))}_{=1}+u(2-u^2)^3\sin(v)\right]\,du\,dvI=v=02πdvu=11[u(2u2)+u(2u2)3sin(v)]du\phantom I=\int\limits_{v=0}^{2\pi}dv\int\limits_{u=-1}^1\left[-u(2-u^2)+u(2-u^2)^3\sin(v)\right]\,duNow let f(u)u(2u2)+u(2u2)3sin(v)\,f(u)\coloneqq-u(2-u^2)+u(2-u^2)^3\sin(v)\, and use the symmetrie

f(u)=(u)(2(u)2)+(u)(2(u)2)3sin(v)\pink{f(-u)}=-(-u)(2-(-u)^2)+(-u)(2-(-u)^2)^3\sin(v)f(u)=u(2u2)u(2u2)3sin(v)=f(u)\phantom{f(-u)}=u(2-u^2)-u(2-u^2)^3\sin(v)=\pink{-f(u)}to rewrite the integral:I=v=02πdvu=11f(u)du=v=02πdvu=01[f(u)+f(u)]du=v=02πdvu=01[f(u)f(u)]du=0\small I=\int\limits_{v=0}^{2\pi}dv\int\limits_{u=-1}^1f(u)\,du=\int\limits_{v=0}^{2\pi}dv\int\limits_{u=\pink0}^1\left[f(u)+\pink{f(-u)}\right]\,du=\int\limits_{v=0}^{2\pi}dv\int\limits_{u=0}^1\left[f(u)\pink{-f(u)}\right]\,du=0

Avatar von 153 k 🚀

Ein anderes Problem?

Stell deine Frage