Aufgabe:
1. Welches Rechteck mit dem Umfang 15 cm hat den größten Flächeninhalt?2. Eine Gerade mit der Gleichung y = f(x) = mx + n bildete mit den Koordinatenachsen ein Dreieck.Der Punkt P(4|2) liegt auf dieser Geraden. Wie sind m und n für den kleinstmöglichenFlächeninhalt zu wählen?3. Ein Prisma mit quadratischer Grundfläche besitzt den Umfang u = 48 cm. Wie sind die Grundseiteund die Höhe zu wählen, damit das Volumen des Körpers maximal wird?4. Aus einem 120 cm langen Draht soll das Kantenmodell eines Quaders hergestellt werden, beidem eine Kante dreimal so lang wie eine Andere sein soll und der Rauminhalt möglichst groß ist.5. Von einem quadratischen Stück Pappe mit einer Seitenlänge von 10 cm werden an den EckenQuadrate herausgeschnitten. Wie ist die Seitenlänge der Quadrate zu wählen, damit der Rest eineoben offene Schachtel mit möglichst großem Rauminhalt ergibt?6. Welche zylindrische Dose mit 1 Liter Fassungsvermögen hat den geringsten Materialverbrauch?7. Ein Gärtner besitzt einen Vorrat an Umrandungssteinen, der insgesamt für eine Strecke von 10 mreicht. Er möchte damit ein kreisförmiges Rosenbeet und ein quadratisches Tulpenbeetabgrenzen. Welche Maße sollten die Beete erhalten, wenn die Gesamtfläche und damit derBedarf an Pflanzen möglichst klein ausfallen soll?8. Eine Zündholzschachtel soll 5 cm lang sein und 45 cm3 Inhalt haben. Bei welcher Breite und Höhebraucht man zur Herstellung am wenigsten Material?
Problem/Ansatz:
Das sind meine Matheaufgaben die ich bekommen habe und ich weiß nicht wirklich wie das geht könnte mir da jemand helfen
Bitte nicht soviele Aufgaben auf einmal!
Üblich ist eine pro Thread. Verteile sie auf mehrere!
Lieber eine Aufgabe stellen und ähnliche dann selber probieren.
Das sind doch alles Extremwertaufgaben. Also geht es grundsätzlich darum für die Größe, die extremal werden soll einen Term aufzustellen.
Das kann eigentlich nicht so schwer sein.
1. Welches Rechteck mit dem Umfang 15 cm hat den größten Flächeninhalt?
2(a+b)= 15
a+b = 7,5
b= 7,5-a
A(a) = a*(7,5-a) = 7,5a -a2
A'(a) = 0
7,5-2a = 0
a = 3,75 cm
Es handelt sich um das Quadrat.
2. Eine Gerade mit der Gleichung y = f(x) = mx + n bildete mit den Koordinatenachsen ein Dreieck.Der Punkt P(4|2) liegt auf dieser Geraden. Wie sind m und n für den kleinstmöglichenFlächeninhalt zu wählen?
f(x)=mx+nf(x) = mx + nf(x)=mx+n
P(4∣2)P(4|2)P(4∣2)
f(4)=4m+nf(4) = 4m + nf(4)=4m+n
4m+n=2 4m + n=24m+n=2 → n=2−4m n=2-4mn=2−4m
f(x)=mx+2−4mf(x) = mx + 2-4mf(x)=mx+2−4m
f(0)=2−4mf(0) = 2-4mf(0)=2−4m
Nullstelle:
mx+2−4m=0 mx + 2-4m=0mx+2−4m=0
mx=4m−2 mx =4m-2mx=4m−2
x=4m−2m x =\frac{4m-2}{m}x=m4m−2
Fläche des Dreiecks:
A(m)=12⋅4m−2m⋅(2−4m)A(m)= \frac{1}{2}\cdot \frac{4m-2}{m} \cdot (2-4m) A(m)=21⋅m4m−2⋅(2−4m) soll minimal werden.
A′(m)=...A'(m)= ... A′(m)=...
...=0 ...=0 ...=0
8. Eine Zündholzschachtel soll 5 cm lang sein und 45 cm3 Inhalt haben. Bei welcher Breite und Höhebraucht man zur Herstellung am wenigsten Material?
V= 5*b*h = 45
h= 9/b
O= 2*(5b+5h+bh)
O(b)= 2*(5b+45/b+9)
O'(b) = 2*(5-45/b2) = 10 -90/b2
O'(b) =0
90/b2 = 10
b2= 9
b= 3
h= 3
Gehört zur Antwort von Moliets
Oder Geradenschar durch P(4∣2)P(4|2)P(4∣2)
y−2x−4=m\frac{y-2}{x-4}=mx−4y−2=m
Schnitt mit der x-Achse y=0y=0y=0
−2x−4=m\frac{-2}{x-4}=mx−4−2=m
−2=mx−4m-2=mx-4m−2=mx−4m → −2+4m=mx-2+4m=mx−2+4m=mx
x=4m−2mx=\frac{4m-2}{m}x=m4m−2
Schnitt mit der y-Achse x=0x=0x=0
y−2−4=m\frac{y-2}{-4}=m−4y−2=m → y−2=−4my-2=-4my−2=−4m
y=−4m+2y=-4m+2y=−4m+2
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos