0 Daumen
711 Aufrufe

Aufgabe zu Polynomen:

Buchstabiere diese Darstellung aus

P=i=1nbij=1,jinxajaiajP=\sum \limits _{ i=1 }^{ n }{ { b }_{ i }\prod _{ j=1, j\neq i }^{ n }{ \frac { x-{ a }_{ j } }{ { a }_{ i }-{ a }_{ j } } } }

Avatar von

1 Antwort

+1 Daumen
Ich weiß nicht genau, was mit "Ausbuchstabieren" gemeint ist ... vielleicht das Ausschreiben des Ausdrucks ohne Produkt und Summenzeichen ...?

Das sähe dann so aus:

P=i=1nbij=1,jinxajaiajP=\sum _{ i=1 }^{ n }{ { b }_{ i }\prod _{ j=1, j\neq i }^{ n }{ \frac { x-{ a }_{ j } }{ { a }_{ i }-{ a }_{ j } } } }=b1j=1,j1nxajaiaj+b2j=1,j2nxajaiaj+...+bnj=1,jnnxajaiaj={ b }_{ 1 }*\prod _{ j=1, j\neq 1 }^{ n }{ \frac { x-{ a }_{ j } }{ { a }_{ i }-{ a }_{ j } } } +{ b }_{ 2 }*\prod _{ j=1, j\neq 2 }^{ n }{ \frac { x-{ a }_{ j } }{ { a }_{ i }-{ a }_{ j } } } +...+{ b }_{ n }*\prod _{ j=1, j\neq n }^{ n }{ \frac { x-{ a }_{ j } }{ { a }_{ i }-{ a }_{ j } } }=b1xa2a1a2xa3a1a3...xana1an={ b }_{ 1 }*\frac { x-{ a }_{ 2 } }{ { a }_{ 1 }-{ a }_{ 2 } } *\frac { x-{ a }_{ 3 } }{ { a }_{ 1 }-{ a }_{ 3 } } *...*\frac { x-{ a }_{ n } }{ { a }_{ 1 }-{ a }_{ n } }+b2xa1a2a1xa3a2a3...xana2an+{ b }_{ 2 }*\frac { x-{ a }_{ 1 } }{ { a }_{ 2 }-{ a }_{ 1 } } *\frac { x-{ a }_{ 3 } }{ { a }_{ 2 }-{ a }_{ 3 } } *...*\frac { x-{ a }_{ n } }{ { a }_{ 2 }-{ a }_{ n } }+...+...+bnxa1ana1xa2ana2...xan1anan1+{ b }_{ n }*\frac { x-{ a }_{ 1 } }{ { a }_{ n }-{ a }_{ 1 } } *\frac { x-{ a }_{ 2 } }{ { a }_{ n }-{ a }_{ 2 } } *...*\frac { x-{ a }_{ n-1 } }{ { a }_{ n }-{ a }_{ n-1 } }
Avatar von 32 k
Ja also vielleicht auch so, ich dacht erstmal man soll erklären, was dies heißt, also in Worten.
Und wie sieht es dann mit b 3 aus?
Achso eine passt schon, ich habs und das von dir war richtig, danke))

Ein anderes Problem?

Stell deine Frage