0 Daumen
674 Aufrufe

Gegeben ist die Funktion g(x)=1/4x2 und eine ganzrationale Funktion f dritten Grades.

Der Graph von f verläuft durch den Ursprung des Koordinatensystems und hat dort die selbe Steigung wie g. f besitzt außerdem in (5/6.25) einen Hochpunkt.

1) Nenne die Gleichungen der Tangenten zu f im Ursprung und im angegebenen Hochpunkt.

2) Bestimme die Gleichung von f

Avatar von

1 Antwort

0 Daumen

f (x) = ax3 + bx2 + cx +d

f '(x) = 3ax2 + 2bx + c


f (0) = 0 = a · 03 + b · 02 + c · 0 + d               d = 0

f (5) = 6,25 = a · 53 + b · 52 + c · 5 + d         125a + 25b + 5c + d = 6,25

f ' (5) = 0 = 3a · 52 + 2b · 5 + c                      75a + 10b + c = 0

f ' (0) = 1/4 = 3a · 02 + 2b · 0 + c                   c = 1/4


a = -0,09

b = 0,65

c = 0,25

d = 0


f(x) = -0,09x3 + 0,65x2 + 0,25x

Avatar von

Vielen Dank, der Rechenansatz hat mir schon genügt. Ich bin bloß nicht darauf gekommen, dass das eine Steckbriefaufgabe ist. 

Ein anderes Problem?

Stell deine Frage