0 Daumen
2k Aufrufe

Seinen V ein Vektorraum, f: V -> V ein linearer Endomorphismus und v1, ... , vn ∈ V Eigenvektoren zu paarweise verschiedenen Eigenwerten. Zeigen Sie, v1, ... , vn sind linear unabhängig.

von
Ist das nicht so das linear abhängige Vektoren immer den gleichen Eigenwert haben ?

Wenn die Vektoren also paarweise verschiedene Eigenwerte besitzen, besitzen sie auch paarweise linear unabhängige Vektoren.

Eigentlich klingt die Antwort zu simpel, deswegen vorerst nur als Kommentar.

Was sagen die Leute dazu die sich besser mit Eigenwerten und Eigenvektoren auskennen.
Ist das nicht so das linear abhängige Vektoren immer den gleichen Eigenwert haben ?

Naja, wenn Du im \(\mathbb{R}^2\) 10 Vektoren nimmst, dann sind die linear abhängig, dürften aber nur selten den gleichen Eigenwert haben.

Gruß Mathhilf

1 Antwort

0 Daumen

Hallo,

Beweis mit vollständiger Induktion über \(n\geq 1\):

1. Für \(n=1\) ist die Behauptung trivialerweise wahr.

2. Ind.annahme: sei die Behauptung für ein \(n\geq 1\) bereits bewiesen.

3. Induktionsschritt:

Es sei \(\lambda_1,\cdots,\lambda_{n+1}\) paarweise verschiedene Eigenwerte von \(f\) und $$c_1v_1+\cdots+c_nv_n+c_{n+1}v_{n+1}=0\quad(1)$$ mit Skalaren \(c_1,\cdots,c_{n+1}\).

Wenn wir hierauf \(f\) anwenden, erhalten wir$$c_1\lambda_1v_1+\cdots+c_n\lambda_nv_n+c_{n+1}\lambda_{n+1}v_{n+1}=0\quad(2)$$Nun multiplizieren wir die Gleichung \((1)\) mit \(\lambda_{n+1}\)
und erhalten$$c_1\lambda_{n+1}v_1+\cdots+c_n\lambda_{n+1}v_n+c_{n+1}\lambda_{n+1}v_{n+1}=0\quad(3)$$
Subtrahiert man \((2)\) von \((3)\), so ergibt sich$$c_1(\lambda_{n+1}-\lambda_1)v_1+\cdots+c_n(\lambda_{n+1}-\lambda_n)v_n=0$$Nach Induktionsannahme sind \(v_1,\cdots,v_n\) linear unabhängig, woraus
$$c_1(\lambda_{n+1}-\lambda_1)=\cdots=c_n(\lambda_{n+1}-\lambda_n)=0$$folgt, also wegen der paarweisen Verschiedenheit der \(\lambda_i\):$$c_1=\cdots=c_n=0$$\(c_{n+1}=0\) ergibt sich dann aus \((1)\).

Gruß ermanus

von 14 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community