(cos(t) - t*sin(t))2 =cos2(t) -2 *t *cos(t) sin(t) + t2 sin2(t)
(sin(t ) + t*cos(t))2 =sin2(t) +2 *t sin(t) cos(t) +t2 sin2(t)
insgesamt:
= √(cos2(t) -2 *t *cos(t) sin(t) + t2 sin2(t) +sin2(t) +2 *t sin(t) cos(t) +t2 sin2(t) +1)
=√(cos2(t) + t2 sin2(t) +t2 cos2(t) + sin2(t) +1)
allgemein gilt: sin2(t) +cos2(t)=1
---->
=√(cos2(t) + sin2(t) + t2 sin2(t) +t2 cos2(t) +1)
=√ 1 + t2(sin2(t) +cos2(t) +1)
=√ (2 +t2)