Aufgabe:
= (2√3)11 • ( 1/2 - i1/2 • √3)
= 210 • 35 • √3 - i • 210 • 36
Problem/Ansatz:
kann mir jemand dabei behilflich sein, wie man hier genau vorgegangen ist?
Vielen Dank im Voraus!
Aloha :)
(2⋅3)11⋅(12−i⋅12⋅3)(2\cdot\sqrt3)^{11}\cdot\left(\frac{1}{2}-i\cdot\frac{1}{2}\cdot\sqrt3\right)(2⋅3)11⋅(21−i⋅21⋅3)=211⋅311/2⋅(2−1−i⋅2−1⋅31/2)=2^{11}\cdot3^{11/2}\cdot\left(2^{-1}-i\cdot2^{-1}\cdot3^{1/2}\right)=211⋅311/2⋅(2−1−i⋅2−1⋅31/2)=211⋅311/2⋅2−1−i⋅211⋅311/2⋅2−1⋅31/2=2^{11}\cdot3^{11/2}\cdot2^{-1}-i\cdot2^{11}\cdot3^{11/2}\cdot2^{-1}\cdot3^{1/2}=211⋅311/2⋅2−1−i⋅211⋅311/2⋅2−1⋅31/2=211−1⋅311/2−i⋅211−1⋅311/2+1/2=2^{11-1}\cdot3^{11/2}-i\cdot2^{11-1}\cdot3^{11/2+1/2}=211−1⋅311/2−i⋅211−1⋅311/2+1/2=210⋅35+1/2−i⋅210⋅36=2^{10}\cdot3^{5+1/2}-i\cdot2^{10}\cdot3^{6}=210⋅35+1/2−i⋅210⋅36=210⋅35⋅3−i⋅210⋅36=2^{10}\cdot3^{5}\cdot\sqrt3-i\cdot2^{10}\cdot3^{6}=210⋅35⋅3−i⋅210⋅36
Du tippst schneller als ich. :-)
(23)11⋅(12−i⋅12⋅3)(2\sqrt{3})^{11} \cdot (\frac{1}{2} - i\cdot\frac{1}{2} \cdot\sqrt{3})(23)11⋅(21−i⋅21⋅3)
=(23)11⋅12−i⋅(23)11⋅12⋅3)=(2\sqrt{3})^{11} \cdot \frac{1}{2} - i\cdot(2\sqrt{3})^{11} \cdot\frac{1}{2} \cdot\sqrt{3})=(23)11⋅21−i⋅(23)11⋅21⋅3)
=211311⋅12−i⋅211311⋅12⋅3)=2^{11}\sqrt{3}^{11} \cdot \frac{1}{2} - i\cdot2^{11}\sqrt{3}^{11} \cdot\frac{1}{2} \cdot\sqrt{3})=211311⋅21−i⋅211311⋅21⋅3)=211⋅12⋅310⋅3−i⋅211⋅12⋅312=2^{11}\cdot \frac{1}{2}\cdot\sqrt{3}^{10}\cdot \sqrt{3} - i\cdot2^{11}\cdot\frac{1}{2}\cdot\sqrt{3}^{12}=211⋅21⋅310⋅3−i⋅211⋅21⋅312
=210⋅35⋅3−i⋅210⋅36=2^{10}\cdot3^{5}\cdot \sqrt{3} - i\cdot2^{10}\cdot{3}^{6} =210⋅35⋅3−i⋅210⋅36
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos