(i) 1. f^2 = idV .     <=>   (ii) V =Ker(f−idV)⊕Ker(f+idV).
Für (ii) ==> (i) hätte ich was:
  Sei x∈V ==> Es gibt u ∈ Ker(f−idV) und  w ∈ Ker(f+idV)
                     mit x = u+w
==>  (f-idV)(u) = 0   also   f(u) - u = 0  also  f(u)=u
und entsprechend f(w)=-w
==>  f^2 (x) = f ( f(x)) = f (  f(u+w) ) = f (  f(u) + f ( w) )
   =  f (  u  -   w  )   =  f(u) - f ( w ) =  u - ( -w) = u+w = x
also f^2 = idV.