Hallo,
a) y= cos(x-π) -sin(x+π)
Additionstheoreme verwenden:
cos(α−β)=cosα⋅cosβ+sinα⋅sinβ
sin(α+β)=sinα⋅cosβ+cosα⋅sinβ
cos(x-π) = cos(x) cos(π) +sin(x) sin(π) = cos(x)*(-1) +sin(x) *0 = -cos(x)
sin(x+π)=sin(x) *cos(π) +cos(x) sin(π) =sin(x) *(-1) +cos(x) *0= -sin(x)
->= -cos(x) -(-sin(x))= sin(x) -cos(x)
allgemein:
f(t)=2a0+k=1∑∞(ak⋅cos(kω1t)+bk⋅sin(kω1t))
a= -1
b= 1