Ableitung der Exponentialfunktion
f(x) = ax = eln(a^x) = eln(a)·x
f'(x) = ln(a)·eln(a)·x = ln(a)·eln(a^x) = ln(a)·ax
Du siehst hier kommt nur der LN der Basis als Faktor dazu
Jetzt deine Funktion Ableiten über Kettenregel
f(x) = 2-x
f'(x) = - ln(2)·2-x
Neben dem LN(2) kommt also noch die innere ableitung -1 als Faktor dazu.
Ist das so verständlich oder sind noch Fragen?