Steckbriefaufgabe: Ganzrationale Funktion 4ten Grades

0 Daumen
103 Aufrufe
Gesucht ist eine ganzrationale Funktion 4.Grades. Die Funktion ist symmetrisch zur y-Achse. Sie hat eine Nullstelle im Punkt x=4 und schneidet die y-Achse im Punkt Y (0/2). Zudem ist ein Maximum bei x=2 bekannt. Bestimmen Sie die Funktion.

Ich hab bis jetzt:

Ansatz:
f (x) = ax4+bx2+c
f '(x) = 4ax3+2bx
f ''(x) = 12ax2+2b

N (4/0) →  f (4) = 0
                  256a + 16b = 0
Y (0/2) → f (0) = 2
                 c = 2
H (2/?) → f (2) = ?
     
Waagrechte Tangente bei x=2 → f '(2) = 0
                                                            512a + 4b = 0
Gefragt 1 Jul 2012 von Gast hj2488

1 Antwort

0 Daumen

Außer, dass du an einer Stelle das c vergessen hast und dich bei 2^3*4 etwas verrechnet hast, ist das soweit richtig. Du hast drei Gleichungen für drei Variablen:

(I) 256a+16b+c=0

(II) c=2

(III) 32a+4b = 0

 

Rechnet man jetzt (I)-8*(III), so folgt:
256a+16b+c-8*32a-8*4b = 0

256a+16b+c-256a-32b = 0

c = 16b

b = 1/8

Und mit (I) oder (III) kann man jetzt auch a berechnen. Es gilt:

a = -4*b/32 = -1/64

Lässt man sich diese Funktion zeichnen, so erkennt man, dass

f(x) = -x4/64+x2/8 + 2

tatsächlich die gewünschten Eigenschaften hat.

 

Beantwortet 2 Jul 2012 von Julian Mi Experte X
Danke. Aber woher weiß ich, dass ich da "-8" rechnen muss?
Ich habe das natürlich so gewählt, dass das a aus der Gleichung völlig rausfällt.

Man kann das System natürlich auch z.B. nach dem Gleichsetzungsverfahren lösen, also beide Gleichungen z.B. nach a umstellen und dann gleichsetzen.

Wichtig ist nur, dass man eine Variable aus den beiden Gleichungen eliminiert.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und ohne Registrierung

x
Made by Matheretter
...