Wie kommt man auf diesen Bruch?
Ich verstehe vor allem nicht, wie es zu den 21/2 kommt.
Text erkannt:
⇔r=w12⋅K12L12⋅12⋅L12K12⇔r=W⋅L122⋅K12K122L12∣w⋅L12xK12⋅xL12K12=KL12⋅L1^2=(L12)2=L \begin{array}{l}\Leftrightarrow r=\frac{w}{\frac{\frac{1}{2} \cdot K^{\frac{1}{2}}}{L^{\frac{1}{2}}}} \cdot \frac{\frac{1}{2} \cdot L^{\frac{1}{2}}}{K^{\frac{1}{2}}} \\ \Leftrightarrow r=\frac{\frac{W \cdot L^{\frac{1}{2}}}{2 \cdot K^{\frac{1}{2}}}}{\frac{K^{\frac{1}{2}}}{2 L^{\frac{1}{2}}}} \mid \frac{w \cdot L^{\frac{1}{2}}}{x K^{\frac{1}{2}}} \cdot \frac{x L^{\frac{1}{2}}}{K^{\frac{1}{2}}}=K L^{\frac{1}{2}} \cdot L^{\frac{\hat{1}}{2}}=\left(L^{\frac{1}{2}}\right)^{2}=L\end{array} ⇔r=L2121⋅K21w⋅K2121⋅L21⇔r=2L21K212⋅K21W⋅L21∣xK21w⋅L21⋅K21xL21=KL21⋅L21^=(L21)2=L
1/2 kannst du sofort wegkürzen
Doppelbruchgesetz anwenden:
a/(b/c) = (ac)/b
a^(1/2)*a^(1/2) = a^(1/2+1/2) = a1 = a
oder:
a^(1/2)*a^(1/2) = (a^(1/2))2 = a1 = a
Wo steht 21/2 ?
Es wurden die Regeln
a⋅bc=a⋅bca\cdot \frac{b}{c} = \frac{a\cdot b}{c}a⋅cb=ca⋅b
und
ac⋅bd=a⋅bc⋅d\frac{a}{c}\cdot \frac{b}{d} = \frac{a\cdot b}{c\cdot d}ca⋅db=c⋅da⋅b
verwendet.
W12K12L12⋅12L12K12=W12K12L12⋅(12⋅L12K12)=W12K12L12⋅L122⋅K12=W12⋅K12L12⋅L122⋅K12=WK122L12⋅L122⋅K12=W⋅L122⋅K12K122L12=W⋅L122⋅K12K122L12\begin{aligned} & \frac{W}{\frac{\frac{1}{2}K^{\frac{1}{2}}}{L^{\frac{1}{2}}}}\cdot\frac{\frac{1}{2}L^{\frac{1}{2}}}{K^{\frac{1}{2}}}\\ = & \frac{W}{\frac{\frac{1}{2}K^{\frac{1}{2}}}{L^{\frac{1}{2}}}}\cdot\left(\frac{1}{2}\cdot\frac{L^{\frac{1}{2}}}{K^{\frac{1}{2}}}\right)\\ = & \frac{W}{\frac{\frac{1}{2}K^{\frac{1}{2}}}{L^{\frac{1}{2}}}}\cdot\frac{L^{\frac{1}{2}}}{2\cdot K^{\frac{1}{2}}}\\ = & \frac{W}{\frac{1}{2}\cdot\frac{K^{\frac{1}{2}}}{L^{\frac{1}{2}}}}\cdot\frac{L^{\frac{1}{2}}}{2\cdot K^{\frac{1}{2}}}\\ = & \frac{W}{\frac{K^{\frac{1}{2}}}{2L^{\frac{1}{2}}}}\cdot\frac{L^{\frac{1}{2}}}{2\cdot K^{\frac{1}{2}}}\\ = & \frac{W\cdot\frac{L^{\frac{1}{2}}}{2\cdot K^{\frac{1}{2}}}}{\frac{K^{\frac{1}{2}}}{2L^{\frac{1}{2}}}}\\ = & \frac{\frac{W\cdot L^{\frac{1}{2}}}{2\cdot K^{\frac{1}{2}}}}{\frac{K^{\frac{1}{2}}}{2L^{\frac{1}{2}}}} \end{aligned}======L2121K21W⋅K2121L21L2121K21W⋅(21⋅K21L21)L2121K21W⋅2⋅K21L2121⋅L21K21W⋅2⋅K21L212L21K21W⋅2⋅K21L212L21K21W⋅2⋅K21L212L21K212⋅K21W⋅L21
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos