0 Daumen
153 Aufrufe

Hi

Ich muss die Gleichung der Tangente im Punkt P des Kreises K aufstellen:

K: x+y2 =16   P (-2.4/y)   y>0

Wie kann ich hier vorgehen mit quadratische Erweiterung ?

von

1 Antwort

+1 Punkt

Du benötigst die Steigung m der Kreiskurve an der Stelle x = - 2,4 , denn die Tangente an den Kreis an dieser Stelle hat genau jene Steigung m.

Die Steigung ist der Funktionswert der Ableitung an der Stelle x = - 2,4.

Also zunächst Kreisgleichung nach y = f ( x ) auflösen:

y = f ( x ) = √ ( 16 - x 2 )

f ' ( x ) =  - 2 x / ( 2 * √ ( 16 - x 2 ) ) = - x / √ ( 16 - x 2 )

Setzt man hier nun x = - 2,4, so erhält man:

f ' ( x ) =  - ( - 2,4 ) / √ ( 16 - ( - 2,4 ) 2 )

= 2,4 / √ ( 16 - 5,76 )

= 2,4 / 3,2

= 0,75

Das ist die Steigung m der gesuchten Tangente.

Nun benötigt man noch einen Punkt, durch den die Tangente verlaufen soll, dazu mann man den Punkt

P ( x1 | y1 )

= P ( - 2,4 | f ( - 2,4 ) )

= P ( - 2,4 | 3,2 )

nehmen und dann mit Hilfe der Punkt-Steigungsform einer Geraden

g ( x ) = m * ( x - x1 ) + y1

die Geradengleichung t ( x ) der Tangente ermitteln:

t  ( x ) = 0,75 ( x - ( - 2,4 ) )  + 3,2

= 0,75 x + 1,8 + 3,2

= 0,75 x + 5

 

Hier ein Schaubild des Kreises und der Tangente t ( x) :

http://www.wolframalpha.com/input/?i=sqrt%2816-x%C2%B2%29%2C0.75x%2B5from-5to5

(Aufgrund der unterschiedlichen Skalierung der Achsen erscheint der Kreis etwas verzerrt.)

von 32 k  –  ❤ Bedanken per Paypal

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...